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Abstract This paper presents a simple and effective

nonparametric approach to the problem of image pars-

ing, or labeling image regions (in our case, superpixels

produced by bottom-up segmentation) with their cate-

gories. This approach is based on lazy learning, and it

can easily scale to datasets with tens of thousands of

images and hundreds of labels. Given a test image, it

first performs global scene-level matching against the

training set, followed by superpixel-level matching and

efficient Markov random field (MRF) optimization for

incorporating neighborhood context. Our MRF setup

can also compute a simultaneous labeling of image re-

gions into semantic classes (e.g., tree, building, car) and

geometric classes (sky, vertical, ground). Our system

outperforms the state-of-the-art nonparametric method

based on SIFT Flow on a dataset of 2,688 images and
33 labels. In addition, we report per-pixel rates on a

larger dataset of 45,676 images and 232 labels. To our

knowledge, this is the first complete evaluation of im-

age parsing on a dataset of this size, and it establishes a

new benchmark for the problem. Finally, we present an

extension of our method to video sequences and report

results on a video dataset with frames densely labeled

at 1 Hz.
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1 Introduction

This paper addresses the problem of image parsing, or

segmenting all the objects in an image and identifying

their categories. Many approaches to this problem have

been proposed recently, including ones that estimate

labels pixel by pixel [16,23,37,36], ones that aggregate

features over segmentation regions [10,11,20,28,32,39],

and ones that predict object bounding boxes [4,7,19,

34]. Most of these methods operate with a few pre-

defined classes and require a generative or discrimi-

native model to be trained in advance for each class

(and sometimes even for each training exemplar [28,

29]). Training can take days and must be repeated from

scratch if new training examples or new classes are

added to the dataset. In most cases (with the notable

exception of [36]), processing a test image is also quite

slow, as it involves steps like running multiple object

detectors over the image, performing graphical model

inference, or searching over multiple segmentations.

While most existing methods are tailored for “closed

universe” datasets, a new generation of “open universe”

datasets is beginning to take over. An example open-

universe dataset is LabelMe [35], which consists of com-

plex, real-world scene images that have been segmented

and labeled by multiple users (sometimes incompletely

or noisily). There is no pre-defined set of class labels;

the dataset is constantly expanding as people upload

new photos or add annotations to current ones. In or-

der to cope with such datasets, vision algorithms must

have much faster training and testing times, and they

must make it easy to continuously update the visual

models with new classes or new images.

Recently, a few researchers have begun advocating

nonparametric, data-driven approaches suitable for open-

universe datasets [15,43,27,26]. Such approaches do not
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Fig. 1 System overview. Given a query image we retrieve similar images from our dataset using several global features. Next,
we divide the query into superpixels and compute a per-superpixel likelihood ratio score for each class based on nearest-
neighbor superpixel matches from the retrieval set. These scores, in combination with a contextual MRF model, give a dense
labeling of the query image in terms of semantic and geometric labels.

do any training at all. Instead, for each new test image,

they try to retrieve the most similar training images

and transfer the desired information from the training

images to the query. Liu et al. [26] have proposed a non-

parametric label transfer method based on estimating

“SIFT flow,” or a dense deformation field between im-

ages. The biggest drawback of this method is that the

optimization problem for finding the SIFT flow is fairly

complex and expensive to solve. Moreover, the formu-

lation of scene matching in terms of estimating a dense

per-pixel flow field is not necessarily in accord with our

intuitive understanding of scenes as collections of dis-

crete objects defined by their spatial support and class

identity.

We set out to implement a nonparametric solution

to image parsing that is as straightforward and efficient

as possible, and that relies only on operations that can

easily scale to even larger image collections and sets of

labels. Figure 1 gives an overview of our system. Simi-

larly to [26], our proposed method requires no training

(just some basic computation of dataset statistics), and

makes use of a retrieval set of scenes whose content is

used to interpret the test image. However, unlike the

approach of [26], which works best if the retrieval set

images are very similar to the test image in terms of

spatial layout of the classes, we transfer labels at the

level of superpixels [33], or coherent image regions pro-

duced by a bottom-up segmentation method. The label

transfer is accomplished with a fast and simple nearest-

neighbor search algorithm, and it allows for more vari-

ation between the layout of the test image and the im-

ages in the retrieval set. Moreover, using segmentation

regions as a unit of label transfer gives better spatial

support for aggregating features that could belong to

the same object [13].

The prevailing consensus in the recognition commu-

nity is that image parsing requires context [4,9,19,20,

32]. However, learning and inference with most existing

contextual models are slow and non-exact. Therefore, in

keeping with our goal of developing a scalable system,

we restrict ourselves to efficient forms of context that

do not need training and that can be cast in an MRF

framework amenable to optimization by fast graph cut

algorithms [1,2,22]. Our in-depth analysis presented in

Section 3 demonstrates that such simple context is suf-

ficient for good performance provided the local feature

representation is powerful enough. We also investigate

geometric/semantic context in the manner of Gould et

al. [11]. Namely, for each superpixel in the image, we si-

multaneously estimate a semantic label (e.g., building,
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car, person, etc.) and a geometric label (sky, ground,

or vertical surface) while making sure the two types of

labels assigned to the same region are consistent (e.g.,

a building has to be vertical, road horizontal, and so

on). Our experiments show that enforcing this coher-

ence improves the performance of both labeling tasks.

Our system exceeds the results reported in [26] on

a dataset of 2,688 images and 33 labels. Moreover, to

demonstrate the scalability of our method, we present

per-pixel and per-class rates on a subset from the La-

belMe and SUN [44] datasets totaling 45,676 images

and 232 labels. To our knowledge, we are the first to

report complete recognition results on a dataset of this

size. Thus, one of the contributions of our work is to

establish a new benchmark for large-scale image pars-

ing. Note that unlike other popular benchmarks for

image parsing (e.g., [11,20,26,37]), our LabelMe+SUN

dataset contains both outdoor and indoor images. As

will be discussed in Section 3.3, indoor imagery cur-

rently appears to be much more challenging for general-

purpose image parsing systems than outdoor imagery,

due in part to the greater diversity of indoor scenes, as

well as to the smaller amount of training data available

for them.

As another contribution, we extend our parsing ap-

proach to video and show that we can take advantage

of motion cues and temporal consistency to improve

performance. Existing video parsing approaches [3,47]

use structure from motion to obtain either sparse point

clouds or dense depth maps, and extract geometry-

based features that can be combined with appearance-

based features or used on their own to achieve greater

accuracy. We take a simpler approach and only use mo-

tion cues to segment the video into temporally consis-

tent regions [12], or supervoxels. This helps to better

separate moving objects from one another especially

when there is no high-contrast edge between them. Our

results in Section 4 show that the incorporation of mo-

tion cues from video can significantly help parsing per-

formance even without the explicit reconstruction of

scene geometry.

A previous version of this work has been published

in [41]. The main advances over [41] are: an in-depth

analysis of the various parameters of our system, an

evaluation on the new LabelMe+SUN dataset contain-

ing both outdoor and indoor images, and an extension

of our system to video parsing. Our code and data can

be found at http://www.cs.unc.edu/SuperParsing.

2 System Description

This section presents the details of all the components

of our system. It is based on a lazy learning philosophy,

meaning that (almost) no training takes place offline;

given a test image to be interpreted, our system dynam-

ically selects the training exemplars that appear to be

the most relevant and proceeds to transfer labels from

them to the query. The following is a summary of the

steps taken by the system for every query image.

1. Find a retrieval set of images similar to the query

image (Section 2.1).

2. Segment the query image into superpixels and com-

pute feature vectors for each superpixel (Section

2.2).

3. For each superpixel and each feature type, find the

nearest-neighbor superpixels in the retrieval set ac-

cording to that feature. Compute a likelihood score

for each class based on the superpixel matches (Sec-

tion 2.3).

4. Use the computed likelihoods together with pairwise

co-occurrence energies in an Markov Random Field

(MRF) framework to compute a global labeling of

the image (Section 2.4). Alternatively, with modi-

fications, the MRF framework can simultaneously

solve for both semantic and geometric class labels

(Section 2.5).

2.1 Retrieval Set

Similarly to several other data-driven methods [15,26,

27,34], our first step in parsing a query test image is to

find a relatively small retrieval set of training images

that will serve as the source of candidate superpixel-

level matches. This is done not only for computational

efficiency, but also to provide scene-level context for the

subsequent superpixel matching step. A good retrieval

set will contain images that have similar scene types,

objects, and spatial layouts to the query image. In the

attempt to indirectly capture this kind of similarity, we

use three types of global image features (Table 1(a)):

spatial pyramid [25], gist [31], and color histogram. For

each feature type, we rank all training images in increas-

ing order of Euclidean distance from the query. Then

we take the minimum of the per-feature ranks to get a

single ranking for each image, and use the top-ranking

K images as the retrieval set (a typical value of K in

our experiments is 200). Empirically, this method gives

us an improvement of 1-2% over other schemes, such as

simply averaging the ranks. Intuitively, taking the best

scene matches from each of the global descriptors leads

to better superpixel-based matches for region-based fea-

tures that capture similar types of cues as the global

features (Table 1b).



4 Joseph Tighe, Svetlana Lazebnik

Table 1 A complete list of features used in our system

(a) Global features for retrieval set computation (Section 2.1)
Type Name Dimension

Global
Spatial pyramid (3 levels, SIFT dictionary of size 200) 4200
Gist (3-channel RGB, 3 scales with 8, 8, & 4 orientations) 960
Color histogram (3-channel RGB, 8 bins per channel) 24

(b) Superpixel features (Section 2.2)

Shape
Mask of superpixel shape over its bounding box (8 × 8) 64
Bounding box width/height relative to image width/height 2
Superpixel area relative to the area of the image 1

Location
Mask of superpixel shape over the image 64
Top height of bounding box relative to image height 1

Texture/SIFT
Texton histogram, dilated by 10 pix texton histogram 100 × 2
Quantized SIFT histogram, dilated by 10 pix quantized SIFT histogram 100 × 2
Left/right/top/bottom boundary quantized SIFT histogram 100 × 4

Color
RGB color mean and std. dev. 3 × 2
Color histogram (RGB, 11 bins per channel), dilated by 10 pix color histogram 33 × 2

Appearance
Color thumbnail (8 × 8) 192
Masked color thumbnail 192
Grayscale gist over superpixel bounding box 320

We examine the contributions of different global fea-

tures and the effect of changing the retrieval set size K

in the experiments of section 3.3.

2.2 Superpixel Features

We wish to label the query image based on the content

of the retrieval set, but assigning labels on a per-pixel

basis as in [16,26,27] tends to be too inefficient. Instead,

like [20,28,32], we choose to assign labels to superpix-

els, or regions produced by bottom-up segmentation.

This not only reduces the complexity of the problem,

but also gives better spatial support for aggregating

features that could belong to a single object than, say,

fixed-size square windows centered on every pixel in

the image. We obtain superpixels using the fast graph-

based segmentation algorithm of Felzenszwalb and Hut-

tenlocher [8] 1 and describe their appearance using 20

different features similar to those of Malisiewcz and

Efros [28], with some modifications and additions. A

complete list of the features is given in Table 1(b).

In particular, we compute histograms of textons2 and

dense SIFT descriptors over the superpixel region, as

well as a version of that region dilated by 10 pixels.

For SIFT features, which are more powerful than tex-

tons, we have also found it useful to compute left, right,

top, and bottom boundary histograms. To do this, we

find the boundary region as the difference between the

superpixel dilated and eroded by 5 pixels, and then ob-

tain the left/right/top/bottom parts of the boundary

1 We set K = 200 and σ = .8
2 Code: http://www.robots.ox.ac.uk/˜vgg/research/texclass

/filters.html

by cutting it with an “X” drawn over the superpixel

bounding box. All of the features are computed for each

superpixel in the training set and stored together with

their class labels. We associate a class label with a train-

ing superpixel if 50% or more of the superpixel overlaps

with a ground truth segment mask with that label.

2.3 Local Superpixel Labeling

Having segmented the test image and extracted the fea-

tures of all its superpixels, we next obtain a log likeli-

hood ratio score for each test superpixel (si) and each
class (c) that is present in the retrieval set. Making the

Naive Bayes assumption that features (fki ) are inde-

pendent of each other given the class, the log likelihood

ratio is defined as

L(si, c) = log
P (si|c)
P (si|c̄)

= log
∏
k

P (fki |c)
P (fki |c̄)

=
∑
k

log
P (fki |c)
P (fki |c̄)

,

(1)

where c̄ is the set of all classes excluding c. Each likeli-

hood ratio P (fki |c)/P (fki |c̄) is computed with the help

of nonparametric density estimates of features from the

required class(es) in the neighborhood of fki . Specif-

ically, let D denote the set of all superpixels in the

training set, and N k
i denote the set of all superpixels

in the retrieval set whose kth feature distance from fki
is below a fixed threshold tk. Then we have
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Fig. 2 Our contextual edge penalty before and after we run our MRF optimization. The top row shows our contextual model
successfully flags improbable boundaries between “sea” and “road” and the second row shows it flags “Desert” and “Field”.

P (fki | c)
P (fki | c̄)

=
(n(c,N k

i ) + ε)/n(c,D)

(n(c̄,N k
i ) + ε)/n(c̄,D)

=
n(c,N k

i ) + ε

n(c̄,N k
i ) + ε

× n(c̄,D)

n(c,D)
,

(2)

where n(c,S) (resp. n(c̄,S)) is the number of superpix-

els in set S with class label c (resp. not c) and ε is a con-

stant added to prevent zero likelihoods and smooth the

counts. In our implementation, we use the `2 distance

for all features, and set each threshold tk to the median

distance to the T th nearest neighbor for the kth feature

type over the dataset. Interestingly, the radius thresh-

old tk does not seem to have a large influence on the

performance of our system, though using a radius in-

stead of taking a fixed number of nearest neighbors was

very important to achieve high performance. We use a

target number of near neighbors T = 80 for all experi-

ments in this paper. We examine the effect of changing

the smoothing constant (ε) in section 3.3. The super-

pixel neighbors N k
i are found by linear search through

the retrieval set. While approximate nearest neighbor

techniques could be used to speed up this search, at our

current scale this is not the computational bottleneck

of our system as will be discussed in Section 3.3.

At this point, we can obtain a labeling of the image

by simply assigning to each superpixel the class that

maximizes eq. (1). As shown in Table 2, the resulting

classification rates already come within 2.5% of those

of [26].

2.4 Contextual Inference

Next, we would like to enforce contextual constraints

on the image labeling – for example, a labeling that

assigns “water” to a superpixel completely surrounded

by “sky” is not very plausible. Many state-of-the-art

approaches encode such constraints with the help of

conditional random field (CRF) models [9,11,16,30,32].

However, CRFs tend to be very costly both in terms of

learning and inference. In keeping with our nonpara-

metric philosophy and emphasis on scalability, we re-

strict ourselves to contextual models that require min-

imal training and that can be solved efficiently. There-

fore, we formulate the global image labeling problem

as minimization of a standard MRF energy function

defined over the field of superpixel labels c = {ci}:

J(c) =
∑

si∈SP

Edata(si, ci) + λ
∑

(si,sj)∈A

Esmooth(ci, cj) ,

(3)

where SP is the set of superpixels, A is the set of pairs

of adjacent superpixels and λ is the smoothing constant.

We define the data term as:

Edata(si, ci) = −wiσ(L(si, ci)), (4)

where L(si, ci) is the likelihood ratio score from eq. (1),

σ(t) = exp(γt)/(1 + exp(γt)) is the sigmoid function3

and wi is the superpixel weight (the size of si in pixels

3 Note that our original system [41] did not use the sig-
moid nonlinearity, but in our subsequent work [42] we found
it necessary to successfully perform more complex multi-level
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Fig. 3 In the contextual MRF classification, the road gets replaced by “building,” while “horizontal” is correctly classified. By
jointly solving for the two kinds of labels, we manage to recover some of the “road” and “sidewalk” in the semantic labeling.
Note also that in this example, our method correctly classifies some of the windows that are mislabeled as doors in the ground
truth, and incorrectly but plausibly classifies the windows on the lower level as doors.

divided by the mean superpixel size). The smoothing

term Esmooth is defined based on probabilities of label

co-occurrence:

Esmooth(ci, cj) = − log[(P (ci|cj) + P (cj |ci))/2]

×δ[ci 6= cj ] ,
(5)

where P (c|c′) is the conditional probability of one su-

perpixel having label c given that its neighbor has label

c′, estimated by counts from the training set. We use

the two conditionals P (c|c′) and P (c′|c) instead of the

joint P (c, c′) because they have better numerical scal-

ing, and average them to obtain a symmetric quantity.

Multiplication by δ[ci 6= cj ] is necessary to ensure that

this energy term is semi-metric as required by graph cut

inference [2]. Qualitatively, we have found eq. (5) to pro-

duce very intuitive edge penalties. As can be seen from

the examples in Figure 2, it successfully flags improba-

ble boundaries. Quantitatively, results with eq. (5) tend

to be about 1% more accurate than with the constant

Potts penalty δ[ci 6= cj ]. We perform MRF inference us-

ing the efficient graph cut optimization code of [1,2,22].

On our large datasets, the resulting labelings improve

the accuracy by 2-4% (Table 2 and 3).

inference. We have also found that the sigmoid is a good way
of making the output of the nonparametric classifier compa-
rable to that of other classifiers, for example, boosted decision
trees (see Section 3.1).

We have also experimented with a contrast-sensitive

per-pixel MRF similar to that of [26], but have found

that our per-superpixel formulation is faster, and achieves

the same per-pixel and per-class performance. One rea-

son for this may be that the per-superpixel MRF makes

it easier to converge to a better minimum by flipping

labels over larger areas of the image. A per-pixel MRF

does however produce more visually pleasing labelings,

but we chose to use the superpixel-based MRF due to

its superior speed.

2.5 Simultaneous Classification of Semantic and

Geometric Classes

To achieve more comprehensive image understanding

and to explore a higher-level form of context, we con-

sider the task of simultaneously labeling regions into

two types of classes: semantic and geometric [11]. Like

Gould et al. [11], we use three geometric labels – sky,

horizontal, and vertical – although the sets of semantic

labels in our datasets are much larger. In this paper, we

make the assumption that each semantic class is asso-

ciated with a unique geometric class (e.g., “building” is

“vertical,” “river” is “horizontal,” and so on) and spec-

ify this mapping by hand. This is a bit restrictive for a

few classes (e.g., we force “rock” and “mountain” to be

vertical), but for the vast majority of semantic classes,
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Fig. 4 Label frequencies for the superpixels in the training set and the classification rate broken down by class for our full
system on the SIFT Flow dataset.

a unique geometric label makes sense. We jointly solve

for the fields of semantic labels (c) and geometric la-

bels (g) by minimizing a cost function that is a simple

extension of eq. (5):

H(c,g) = J(c) + J(g) + µ
∑

si∈SP

ϕ(ci, gi), (6)

where ϕ is the term that enforces coherence between

the geometric and semantic labels. It is 0 when the se-

mantic class ci is of the geometric class type gi and

1 otherwise. The constant µ controls how strictly the

coherence is enforced (we use µ = λ = 1 in all ex-

periments). Note that it is possible to enforce the se-

mantic/geometric consistency in a hard manner by ef-

fectively setting µ = ∞, but we have found that al-

lowing some tradeoff produces better results. Eq. (6) is

in a form that can be optimized by the α/β-swap al-

gorithm [1,2,22]. The inference takes almost the same

amount of time as for the MRF setup of the previous

section. Figure 3 shows an example where joint infer-

ence over semantic and geometric labels improves the

accuracy of the semantic labeling. More generally, as

will be shown by the quantitative results of Section 3,

joint inference tends to improve both labelings simul-

taneously.

3 Image Parsing Results

In Sections 3.1 and 3.2, we give an overview of results on

our two large datasets, SIFT Flow and Labelme+SUN.

Section 3.3 gives a thorough evaluation of all the major

components of the system.

3.1 SIFT Flow Dataset

The first dataset in our experiments, referred to as

“SIFT Flow dataset” in the following, comes from [26].

It is composed of the 2,688 images that have been thor-

oughly labeled by LabelMe users. Liu et al. [26] have

split this dataset into 2,488 training images and 200

test images and used synonym correction to obtain 33

semantic labels. We use the same training/test split as

[26].

The frequencies of different labels on this dataset

are shown in Figure 4(a). It is clear that they are very

non-uniform: a few classes like building, mountain, tree,

and sky are very common, but there is also a “long tail”

of relatively rare classes like person, sign, boat, and

bus. To give a fair idea of our system’s performance on

such unbalanced data, we evaluate accuracy using not

only the per-pixel classification rate, which is mainly

determined by how well we can label the few largest

classes, but also the average of the per-pixel rates over

all the classes.

As explained in Section 2.5, our system labels each

superpixel by a semantic class (the original 33 labels)
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Table 3 Performance on the LMSun dataset broken down by outdoor and indoor test images. Per-pixel classification rate is
listed first, followed by the average per-class rate in parentheses.

All Outdoor Indoor
Semantic Geometric Semantic Geometric Semantic Geometric

Local labeling 50.6 (7.1) 79.8 (85.6) 56.7 (7.7) 83.0 (87.5) 27.0 (4.9) 67.8 (74.6)
MRF 54.4 (6.8) 82.6 (86.8) 60.4 (7.6) 85.2 (88.6) 31.2 (4.5) 72.6 (76.1)
Joint 54.9 (7.1) 85.9 (86.8) 60.8 (7.7) 88.3 (89.3) 32.1 (4.8) 76.6 (74.0)

Table 2 Performance on the SIFTFlow dataset for our sys-
tem and three state-of-the-art approaches. Per-pixel classifi-
cation rate is listed first, followed by the average per-class
rate in parentheses.

Semantic Geometric
Local labeling 74.1 (30.2) 90.2 (88.7)
MRF 76.2 (29.1) 90.6 (88.9)
Joint 77.0 (30.1) 90.8 (89.2)
Liu et al. (2011) [26] 76.7
Farabet et al. (2012) [6] 78.5 (29.6)
Eigen and Fergus (2012) [5] 77.1 (32.5)

and a geometric class of sky, horizontal, or vertical. Be-

cause the number of geometric classes is small and fixed,

we have trained a boosted decision tree (BDT) clas-

sifier as in [20] to distinguish between them. We use

a tree depth of 8 and train 100 trees for each class.

This classifier outputs a likelihood ratio score that is

comparable to the one produced by our nonparametric

scheme (eq. 1), but that gets about 2% higher accuracy

for geometric classification (Section 3.3 will present a

detailed comparison of nearest-neighbor classifiers and

BDT). Apart from this, local and MRF classification

for geometric classes proceeds as described in Sections

2.3 and 2.4, and we also put the semantic and geomet-

ric likelihood ratios into a joint contextual classification

framework as described in Section 2.5.

Table 2 reports per-pixel and average per-class rates

for semantic and geometric classification of local super-

pixel labeling, separate semantic and geometric MRF,

and joint semantic/geometric MRF. As compared to

the local baseline, the contextual MRF improves over-

all per-pixel rates on the SIFT Flow dataset by about

2%. The average per-class rate for the MRF drops due

to “smoothing away” some of the smaller classes, while

joint semantic/geometric MRF improves the results for

both types of classes. Figure 4(b) shows classification

rates for the 33 individual classes. Similarly to most

other image labeling approaches that do not rely on

object detectors, we get much weaker performance on

“things” (people, cars, signs) than on “stuff” (sky, road,

trees).

Our final system on the SIFT Flow dataset achieves

a classification rate of 77.0%. Thus, we outperform Liu

et al. [26], who report a rate of 76.7% on the same test

set with a more complex pixel-wise MRF (without the

pixel-wise MRF, their rate is 66.24%). Liu et al. [26] also

cite a rate of 82.72% for the top seven object categories;

our corresponding rate is 84.7%. Table 2 also reports

results of two new approaches [5,6] that build on and

compare to the earlier version of our system [41]. Eigen

and Fergus [5] are able to improve on our average per-

class rate, while Farabet et al. [6] are able to improve on

the overall rate through the use of more sophisticated

learning techniques.

Sample output of our system on several SIFT Flow

test images can be seen in Figure 13.

3.2 LM+SUN Dataset

Our second dataset (“LM+SUN” in the following) is

derived by combining the SUN dataset [44] with a com-

plete download of LabelMe [35] as of July 2011. We cull

from this dataset any duplicate images and any images

from video surveillance (about 10,000), and use manual

synonym correction to obtain 232 labels. This results in

45,676 images of which 21,182 are indoor and 24,494 are

outdoor. We split the dataset into 45,176 training im-

ages and 500 test images by selecting test images at

random that have at least 90% of their pixels labeled

and at least 3 unique labels (a total of 13,839 images

in the dataset meet this criteria). Apart from its bigger

size, the inclusion of indoor images makes this dataset

very challenging.

As shown in Figure 5(a), the LM+SUN dataset has

unbalanced label frequencies just like SIFT Flow. Ta-

ble 3 shows the performance for the three versions of

our system (local maximum likelihood labeling, sepa-

rate semantic and geometric MRF, and joint seman-

tic/geometric MRF) on the entire dataset, as well as

on outdoor and indoor images separately. The overall

trend is the same as for SIFT Flow: separate MRF in-

ference always increases the overall accuracy over the

local baseline though it can sometimes over-smooth, de-

creasing the average per-class rate. As for joint seman-

tic/geometric inference, it not only gives the highest

overall accuracy in all cases, but is also much less prone

to over-smoothing.
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Fig. 5 Label frequencies for the superpixels in the training set and the classification rate broken down by class for our full
system on the LM+SUN dataset. Only the 50 most common classes are shown.

Our final system achieves a classification rate of

54.9% across all scene types (as compared to 77% for

SIFT Flow); the respective rates for outdoor and in-

door images are 60.8% and 32.1%. Figure 5(b) gives

a breakdown of rates for the 50 most common classes,

and Figure 14 shows the output of our system on a few

example images. It is clear that indoor scenes are cur-

rently much more challenging than outdoor ones, due at

least in part to their greater diversity and sparser train-

ing data. In fact, we are not aware of any system that

can produce accurate dense labelings of indoor scenes;

most existing work dealing with indoor scenes tries to

leverage specialized geometric information and focuses

on only a few target classes of interest. For example,

Hedau et al. [18] infer the “box” of a room and then

leverage the geometry of that box to align object detec-

tors to the scene [17]. Gupta et al. infer the possible use

of a space [14] rather than directly labeling the objects.

There has also been a recent interest in indoor parsing

with the help of structured light sensors [38,21,24] as

a way to combat the ambiguity present in cluttered in-

door scenes. It is clear that our system, which relies on

generic appearance-based matching, cannot currently

achieve very high levels of performance on indoor im-

agery. However, our reported numbers can serve as a

useful baseline for more advanced future approaches.

The challenges of indoor classification will be further

studied in Section 3.3.

3.3 Detailed System Evaluation

This section presents a detailed evaluation of various

components of our system. Unless otherwise noted, the

evaluation is conducted on both the SIFT Flow dataset

Table 4 Evaluation of global image features for retrieval set
generation (retrieval set size 200). “Maximum Label Overlap”
is the upper bound that we get by selecting retrieval set im-
ages that are the most semantically consistent with the query
(see text).

Global Descriptor SIFT Flow LMSun

Gist (G) 70.8 (29.7) 45.6 (7.0)
Spatial Pyramid (SP) 69.6 (23.1) 47.9 (6.3)
Color Hist. (CH) 66.9 (24.6) 43.5 (5.7)
G + SP 72.3 (27.9) 50.6 (6.9)
G + SP + CH 74.1 (30.2) 50.6 (7.1)
Maximum Label Overlap 80.2 (33.6) 4 66.0 (13.2)

and LM+SUN, no MRF smoothing is done, and only

semantic classification rates are reported.

3.3.1 Retrieval set selection

The initial step of our system is retrieval set selection.

Table 4 shows the performance of different global fea-

tures used for this step. Similarly to [15], we find that

combining global features of complementary descriptive

power gives better scene matches. The last line in this

table, “Maximum Label Overlap,” is meant to be an up-

per bound on the performance of the retrieval set. Here

the retrieval set is found by ranking training images in

terms of the number of pixels their ground truth label

maps share with the label map of the query. The big

gap in accuracy between this “ideal” retrieval set and

the one obtained by global appearance-based matching

underscores the shortcomings of global image features

4 The published version of this paper reported an erro-
neously high result for this test. The result shown here is
correct.



10 Joseph Tighe, Svetlana Lazebnik

Table 5 Effect of retrieval set size on local superpixel label-
ing. Note that the entire LM+SUN training set is too large
for our hardware to store in memory.

Retrieval Set Size SIFT Flow LM+SUN
50 73.0 (32.2) 47.3 (8.1)
100 73.7 (30.1) 48.9 (7.4)
200 74.1 (30.2) 50.6 (7.1)
400 73.0 (28.7) 51.0 (7.6)
800 72.1 (28.1) 51.5 (7.5)
1,600 69.9 (26.2) 51.2 (8.1)
Entire training set 68.4 (23.2) N/A

Table 6 Accuracy of local superpixel labeling obtained by
restricting the set of possible classes in the test image to dif-
ferent “shortlists” (see text).

Shortlist SIFTFlow LM+SUN
Classes in retrieval set 74.1 (30.2) 50.6 (7.1)
10 most common classes 74.9 (21.4) 51.0 (3.1)
Perfect shortlist 81.4 (35.4) 61.7 (11.1)

in terms of finding scenes semantically consistent with

the query.

Table 5 examines the effect of retrieval set size. In-

terestingly, using all of the SIFT Flow training set as

the retrieval set (last row of Table 5) drastically reduces

performance. Thus, we quantitatively confirm the intu-

ition that the retrieval set is not just a way to limit

the computational complexity of superpixel matching,

but is also a form of scene-level context. By restrict-

ing the superpixel matches to come from a small subset

of related scenes, we can get a better interpretation

of the image. Also note that while on the SIFT Flow

dataset the performance degrades once the retrieval set

reaches a size greater than 400, the performance on the

LM+SUN dataset continues to rise even with a retrieval

set size of 1,600: with more than 45,000 images in that

dataset, there are usually still 1,600 images that are of

a sufficiently similar scene type. Thus, it appears that

the right retrieval set size depends in a complex way on

the size of the dataset and on the distribution of scene

types contained in it. Despite this, in all our other ex-

periments we use a retrieval set size of 200 for both

datasets, primarily for efficiency: we must read the de-

scriptor data from disk for each query image on the

LM+SUN dataset, which becomes prohibitively slow

with larger retrieval set sizes.

While the total number of labels in our datasets is

quite high, any single image only contains a small sub-

set of all possible labels. The retrieval set defines not

only the set of training images that can be used to in-

terpret the test image, but also the “shortlist” of all

possible labels that can appear in the test image. By

default, this shortlist in our system is composed of all

Table 7 Effect of indoor/outdoor separation on the accu-
racy of local superpixel labeling on LM+SUN. “Local label-
ing” corresponds to our default system with no separation
between outdoor and indoor training images (the numbers
are the same as in line 1 of Table 3). “Ground truth” uses
the ground truth label for the query image to determine if the
retrieval set should consist of indoor or outdoor images, while
“Classifier” uses a trained indoor/outdoor SVM classifier (see
text).

All Outdoor Indoor
Local labeling 50.6 (7.1) 56.7 (7.7) 27.0 (4.9)
Ground truth 54.4 (7.8) 59.1 (8.3) 36.6 (5.6)
Classifier 52.7 (7.3) 57.4 (8.2) 34.4 (5.5)

the classes present in the retrieval set. Table 6 exam-

ine the effect of restricting these shortlists in various

ways. The first row corresponds to the default short-

list (the same one that is used in the experiments of

the previous two sections). To demonstrate the effect

of long-tail class frequencies, the second row shows the

performance we get by classifying every superpixel in

every test image to the ten most common classes in

the dataset. This slightly increases the overall per-pixel

rate, but lowers the average per-class rate dramatically.

On the other hand, it is worth observing that the av-

erage per-class rate can be inflated upwards by good

performance on a few very rare classes (e.g., there are

only two “suns” in the SIFT Flow test set, and we get

both of them). Finally, the third row of Table 6 shows

the results produced by restricting the shortlist to the

ground truth labels in the query image, giving us an

upper bound for the performance of superpixel match-

ing. Just like the “maximum label overlap” retrieval

set of Table 4, a perfect shortlist “oracle” would give us

significant boosts in overall per-pixel rate and average

per-class rate on both datasets. This suggests that to

further improve system performance, it is important to

work on more accurate scene-level label prediction and

better scene-level matching for generating the retrieval

sets.

The LM+SUN dataset has two obvious sub-classes:

indoor and outdoor. However, retrieval set selection

based on low-level features does not do a very good job

of separating them: for an indoor query image there

are often outdoor images in the retrieval set and vice

versa (see Figure 6 for an illustration). To get an idea

of how much this confusion hurts performance, we can

use ground truth knowledge to force the retrieval set

to have only images of the correct scene type – that is,

an indoor query image would only be matched against

indoor images and likewise for an outdoor one (this is

equivalent to splitting the LM+SUN dataset into two

separate indoor and outdoor datasets). Table 7 (line

2) shows the resulting improvement in overall perfor-
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Fig. 6 Effect of drawing the retrieval set from the entire training set (“base retrieval set”) vs. drawing it from the correct
scene type (“indoor only retrieval set”). With the base retrieval set, the local labeling result has a mix of indoor (floor, wall)
and outdoor (building, rock) classes. On the other hand, if we restrict the retrieval set to consist only of indoor images, we get
a much cleaner result – in particular, we manage to label most of the bed.
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Fig. 7 Per-class classification rates on the SIFT Flow dataset for superpixels (blue) versus ground truth object polygons
(maroon). With the ground truth segmentation, we get an overall per-pixel rate of 82.3 and average class rate of 46.0, showing
that even with correct knowledge of object shape, we still have a hard time classifying many of the classes.

mance. To get most of this gain without “cheating,” we

train an indoor/outdoor classifier using a linear SVM on

all our global image features concatenated and normal-

ized by the standard deviation along each dimension.

This classifier achieves a rate of 92% on our test set.

The last row of Table 7 shows the performance of our

system when we use this classifier to determine which

set of training images to draw our retrieval set from. As

expected, the accuracy is somewhere in between that of

“perfect” indoor-outdoor classification and no classifi-

cation altogether.

Note that performing automatic indoor/outdoor im-

age classification and then using the inferred scene type

to constrain the interpretation of the image is concep-

tually similar to performing a geometric labeling of the

image and using the inferred geometric classes of re-

gions to constrain the semantic classes. In both cases we

are taking advantage of the high accuracy that can be

achieved on relatively easier two- and three-class prob-

lems to improve the accuracy on a harder many-class

problem.

3.3.2 Superpixel classification

After retrieval set selection, the next stage of our system

is superpixel classification. One of the most important

factors affecting the success of this stage is the quality

of the bottom-up segmentation, or how well the spatial

support of the superpixels reflects true object bound-

aries. To see what would happen if we had perfect seg-

mentation, we use the ground truth object polygons to

create segments for the SIFT Flow dataset and then
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Fig. 8 The classification rate of our system computed by consecutively adding superpixel features in decreasing order of their
contribution. Interestingly, the best features for one dataset are not necessarily the best for the other one. We also plot the
rates for the MRF and joint solvers after each feature is added. Notice that the MRF and joint solver are more effective when
the classifier is weaker, and that the joint solver consistently outperforms the MRF for the average per-class rate, correcting
for the over-smoothing that occurs due to the MRF.

apply our local classification scheme to these segments.

Figure 7 compares the per-class rates of our system with

bottom-up segmentation and to those of ground truth

segments. We can see that ground truth segmentation

significantly helps with many classes such as car, win-

dow, balcony, and crosswalk. However, we still do quite

poorly on many of the “thing” classes such as person,

boat, and streetlight. Thus, even if we could get perfect

object outlines, the task of classifying many of the rarer

classes would remain quite challenging.

Next we look at the contributions of our multiple

superpixel-level features (refer back to Table 1(b) for

a list of these features). Figure 8 plots the classifica-

tion rate of the system on both datasets with super-

pixel features added consecutively in decreasing order

of their contribution to performance. Note that this

evaluation is carried out on the test set itself (as op-

posed to a separate validation set), as our goal is sim-

ply to understand the behavior of our representation,

not to tune performance or to perform feature selec-

tion. We start with the single superpixel feature that

has the highest per-pixel classification rate, and then

add one feature at a time, always choosing the one that

gives the largest boost in per-pixel classification rate.

At each step we show the overall and average per-class

rates for local, MRF and joint geometric/semantic la-

beling. One observation is that SIFT histograms con-

stitute three or four of the top ten features selected.

The dilated SIFT histogram, which already incorpo-

rates some context from the superpixel neighborhood,

is our single strongest feature for both datasets, and

it effectively makes the non-dilated SIFT histogram re-
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Table 8 Comparison of our nearest neighbor classifier to boosted decision trees. While the boosted decision trees constantly
perform better on the relatively balanced geometric labels, they have worse per-class rates on semantic labels with heavily
skewed label counts.

Nearest Neighbor Boosted Decision Trees
Semantic Geometric Semantic Geometric

Local labeling 74.1 (30.2) 88.4 (86.1) 75.4 (26.7) 90.2 (88.7)
MRF 76.2 (29.1) 89.0 (86.2) 77.0 (26.4) 90.6 (88.9)
Joint 76.5 (29.3) 89.1 (86.9) 76.9 (26.4) 90.7 (88.9)
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Fig. 9 Results on SIFT Flow and LMSun dataset for lo-
cal superpixel labeling with different values for the likelihood
smoothing constant ε (section 2.2, eq. 2). The constant ad-
justs the tradeoff between average class rate and per-pixel
rate.

dundant. After SIFT Histogram Dilated, the order of

the features selected for both datasets is quite different,

though Top Height and Mean Color show up in the top

five in both cases, confirming that location and color

cues add important complementary information to tex-

ture. Another observation is that while adding features

does sometimes hurt performance, it does so minimally.

One could combat this effect by learning feature weights

as in [5] but this would make our system more prone to

overfitting and introduce an offline learning component

that we would like to avoid.

It is also interesting to compare the curves for three

versions of our system: local superpixel labeling, sep-

arate semantic and geometric MRF, and joint seman-

tic/geometric MRF. Consistent with the results reported

in Tables 2 and 3, the separate MRF tends to lower the

average per-class rate due to over-smoothing and then

the joint MRF brings it back up. More surprisingly, Fig-

ure 8 reveals that both types of our contextual models

have a much greater impact when they are applied on

top of a relatively weak local model, i.e., one with fewer

features. As we add more local features, the improve-
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Fig. 10 The effect of our MRF smoothing parameter λ from
equation 3.

ments afforded by non-local inference gradually dimin-

ish. The important message here is that “local features”
and “context” are, to a great degree, interchangeable.

For one, many of our features are not truly “local” since

they include information from outside the spatial sup-

port of the superpixel. But also, it seems that contex-

tual inference can fix relatively few labeling mistakes

that cannot just as easily be fixed by a more powerful

local model. This is important to keep in mind when

critically evaluating contextual models proposed in the

literature: a big improvement over a local baseline does

not necessarily prove that the proposed form of context

is especially powerful – the local features may simply

not be strong enough.

Next, Figure 9 show the effect of the smoothing con-

stant ε in our likelihood ratio equation (eq. 2). As noted

in [5], increasing ε biases the classifier toward the rarer

classes. In turn, this tends to decrease the overall per-

pixel rate and increase the average per-class accuracy.

We found the value of ε = 1 to achieve a good tradeoff

and use it in all other experiments.
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Further, we wish to examine how well our nonpara-

metric scheme is doing compared to offline discrimina-

tive learning techniques. To this end, we train boosted

decision trees (BDT) for all 33 labels in the SIFT Flow

dataset the same way we train them for the geomet-

ric classes (Section 2.5). We use 100 trees with a depth

of 8 for each one-versus-all classifier. Table 8 compares

our nearest neighbor (NN) scheme and BDT on both

semantic and geometric labels (note that a retrieval

set is not used with BDT). On the semantic classes

which have a very unbalanced class distribution, the

per-pixel rate is higher for BDT but the average per-

class rate is lower. On the other hand, BDT easily out-

performs the NN classifier for the geometric classes,

which have a much more even class distribution. This

validates the implementation choice discussed in Sec-

tion 3.1, namely, using NN for semantic classes and

BDT for geometric ones. Indeed, comparing the joint

NN/NN and BDT/BDT results in the last line of Ta-

ble 8 to the hybrid NN/BDT result in Table 2, we can

see that the latter one offers the best performance.

Similarly to our likelihood ratio smoothing constant

ε, the MRF smoothing constant λ (eq. 3) gives us a

tradeoff between per-pixel and per-class accuracy, as

shown in Figure 10. After λ = 1 both drop off, so we

use that value for both datasets.

3.3.3 Running time

Finally, we analyze the computational requirements of

our system. Our current implementation is mostly in

unoptimized and un-parallelized MATLAB (with some

outside C code for feature extraction and MRF opti-

mization), and all our tests are run on a single PC with

Xeon 3.33 GHz six-core processors and 48 GB RAM.

Table 9 shows a breakdown of the main stages of the

computation. On the SIFT Flow dataset, we are able

to extract features and label images in less than 10 sec-

onds. In comparison, as reported in [26], to classify a

single query image, the SIFT Flow system required 50

alignment operations that took 31 seconds each, or 25

minutes total without parallelization.

As shown in Figure 11, our algorithm complexity is

approximately quadratic in the average number of su-

perpixels per image in the dataset due to the need to

exhaustively match every test superpixel to every re-

trieval set superpixel. On the other hand, given a fixed

retrieval set size, this time is independent of the over-

all number of training images. For LM+SUN, the main

bottleneck of our system is not superpixel search, but

file I/O for loading retrieval set superpixel descriptors

from disk. However, it should be possible to overcome

this bottleneck with appropriate hardware, paralleliza-

Table 9 The average timing in seconds of the different stages
in our system (excluding file I/O). While the runtime is sig-
nificantly longer for the LM+SUN dataset, this is primarily
due to the change in image size and not the number of images.

SIFT Flow LM+SUN

Training set size 2,488 45,176
Image size 256 × 256 800 × 600
Avg. # superpixels 63.9 178.2

Feature extraction 1.5 ± 0.5 5.2 ± 1.8

Retrieval set search 0.04 ± 0.0 3.5 ± 0.51
Superpixel search 3.75 ± 1.8 13.1 ± 11.2
MRF solver 0.005 ± 0.003 .009 ± .006
Total (excluding features) 4.4 ± 2.3 16.6 ± 11.7
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Fig. 11 Query time vs. number of superpixels in the query
image. Notice that for small images in the LM+SUN dataset,
the retrieval set query time is the only part of the system
that takes longer than on the SIFT Flow dataset and thus
the total processing time remains similar.

tion, and/or data structures for fast search. On a more

fundamental research level, the dependence of running

time on image resolution deserves some attention. The

problem of efficiently parsing megapixel images while

deriving additional recognition cues from the higher

resolution is currently wide open and extremely chal-

lenging. Curiously, even as the sizes of datasets used in

recognition research have increased dramatically in re-

cent years, the resolution of individual images has not.

4 Video Parsing

This section presents the extension of our system to

video. Video sequences provide richer information which

should be useful for better understanding scenes. Intu-

itively, motion cues can improve object segmentation,

and being able to observe the same objects in multiple
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Spatiotemporal Segmentation

Still Image Segmentation

Frames

Fig. 12 A comparison of still image segmentation of Felzenszwalb et al. [8] (second row) to the spatiotemporal segmentation of
Grundmann et al. [12] (third row). Shown are only the segments required to cover the foreground cars in each frame. The still
image segmentation is not able to separate the lower parts of the cars from the road, while the spatiotemporal segmentation
does not suffer from the same problem.

frames, possibly at different angles or scales, can help

us build a better model of the objects’ shape and ap-

pearance. On the other hand, the large volume of video

data makes parsing very challenging computationally.

Previous approaches have tried a variety of strate-

gies for exploiting the cues contained in video data.

Brostow et al. [3], Sturgess et al. [40], and Zhang et

al. [47] extract 3D structure (sparse point clouds or

dense depth maps) from the video sequences and then

use the 3D information as a source of additional fea-

tures for parsing individual frames. Xiao and Quan [45]

run a region-based parsing system on each frame and

enforce temporal coherence between regions in adjacent

frames as a post-processing step.

We pre-process the video using a spatiotemporal

segmentation method [12] that gives 3D regions or su-

pervoxels that are spatially coherent within each frame

(i.e., have roughly uniform color and optical flow) as

well as temporally coherent between frames. The hope

is that these regions will contain the same object from

frame to frame. We then compute local likelihood scores
for possible object labels over each supervoxel, and fi-

nally, construct a single graph for each video sequence

where each node is a supervoxel and edges connect ad-

jacent supervoxels. We perform inference on this graph

using the same MRF formulation as in Section 2.5. Sec-

tion 4.1 will give details of our video parsing approach,

and Section 4.2 will show that this approach signifi-

cantly improves the performance compared to parsing

each frame independently.

4.1 System Description

We wish to take advantage of the motion cues in video

without explicitly adding motion or geometric features

to our system. We do this by using the hierarchical

video segmentation method of Grundmann et al. [12],

which Xu and Corso [46] show to be quite effective at

capturing the boundaries of objects in video. We run all
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videos through the segmentation website of [12]5 with

default parameters to obtain a hierarchy of segmenta-

tion volumes and use the lowest level of the hierarchy

as supervoxels.6 Figure 12 contrasts the outputs of still

image and video segmentation, showing that the super-

voxel boundaries tend to better adhere to boundaries

of objects such as cars.

Once we obtain supervoxels for a video sequence,

we need to compute a data term Edata(vi, c) for each

supervoxel vi and each class label c. In principle, this

could be done directly by extracting spatiotemporal fea-

tures from each vi, but to simplify the extension of our

system from still images, we have chosen to combine

scores computed over 2D time slices of vi. Specifically,

given a class c and the slice of supervoxel vi in the jth

frame, denoted sji , we compute a log likelihood ratio

score L(sji , c). This can be done with either our NN

scheme (eq. (1)) or with BDTs (Section 3.1), though in

the experiments of the next section we use only BDTs.

For combining the per-frame scores, we have tried a

number of approaches and found the following heuris-

tic to give the best performance:

Edata(vi, c) = −max
j

[wj
iσ(L(sji , c))], (7)

where wj
i is the relative size of sji and σ(·) is a normal-

izing sigmoid function as in eq. (4). In other words, we

weight each per-frame score by the size of the region

in that frame (the idea being that frames in which the

supervoxel is larger give better evidence about its class

identity) and take the maximum of the weighted scores

over all the frames in which the supervoxel appears (in-

tuitively, the frame in which the weighted score is high-

est is the one in which we got the best “look” at the

object and were the most confident about its identity).

Finally, we construct an MRF for the entire video

sequence where nodes represent supervoxels and edges

connect pairs of supervoxels that are spatially adjacent

in at least one frame. We define the edge energy term

in the same way as in the 2D case, using eq. (5). We

do this for both semantic and geometric classes and

solve for them simultaneously using the same joint for-

mulation as in eq. (6). For the video sequences in our

experiments, which range from 1,500 to 4,000 frames,

we typically obtain graphs of 10,000 to 30,000 nodes,

which are very tractable.

5 http://videosegmentation.com/
6 Since the videos were taken from a forward-moving cam-

era, we have found the segmentation results to be better if
we run the videos through the system backwards.

Table 10 CamVid dataset results. (a) Still image segmenta-
tion baseline. (b) Results with spatiotemporal segmentation
(see text). (c) Competing state-of-the-art approaches. As be-
fore, per-pixel classification rate is followed by the average
per-class rate in parentheses.

Semantic Geometric

(a)

Still Image Parsing
Local Labeling 76.9 (44.3) 91.6 (92.0)
MRF 77.4 (43.5) 91.6 (91.9)
Joint 77.6 (43.8) 91.7 (92.1)

(b)

Spatiotemporal Parsing
Temporally Incoherent 82.6 (51.2) 94.6 (94.8)
Temporally Coherent 82.6 (51.3) 94.2 (94.8)
MRF 83.0 (51.0) 94.2 (94.4)
Joint 83.3 (51.2) 94.2 (94.7)

(c)

Brostow et al. [3] 69.1 (53.0)
Sturgess et al. [40] 83.8 (59.2)
Zhang et al. [47] 82.1 (55.4)
Ladicky et al. [23] 83.8 (62.5)

4.2 Results

We test our video segmentation on the standard CamVid

dataset [3], which consists of daytime and dusk videos

taken from a car driving through Cambridge, England.

There are a total of five video sequences. We follow

the training/test split of [3], with two daytime and one

dusk sequence used for training, and one daytime and

one dusk sequence used for testing. The sequences are

densely labeled at one frame per second with 11 class

labels: Building, Tree, Sky, Car, Sign-Symbol, Road,

Pedestrian, Fence, Column-Pole, Sidewalk, and Bicy-

clist. There are a total of 701 labeled frames in the

dataset with 468 used for training and 233 for testing.

Note that while we evaluate the accuracy of our output
on only the labeled testing frames, we do obtain dense

labels for all frames in the test video.

Table 10(a) shows baseline performance using our

still image parsing approach that segments and labels

each frame independently. Table 10(b) shows results

with spatiotemporal segmentation used in two different

ways. The first variant, “temporally incoherent,” just

uses the segmentation to generate the regions in each

frame; each frame is still parsed independently, and re-

gions belonging to the same supervoxel are not required

to have the same label from frame to frame. The second

variant, “temporally coherent,” combines the per-frame

likelihood scores as described in Section 4.1 to assign

a single label to each supervoxel. Both methods give a

significant improvement over still image parsing. Note

that even though the temporally coherent method has a

similar accuracy to the incoherent one, the output video

is much more visually pleasing in the former case, since

the labeling “flickers” much less over time (see Figure

15 for examples).
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Table 11 Per-class performance on the CamVid [3] dataset.
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Still image parsing
(joint sem./geom.) 84.8 65.1 94.7 47.5 24.6 96.2 8.3 9.1 3.4 43.7 3.9 43.8 78.6
Spatiotemporal parsing
(joint sem./geom.) 87.0 67.1 96.9 62.7 30.1 95.9 14.7 17.9 1.7 70.0 19.4 51.2 83.3
Brostow et al. [3] 46.2 61.9 89.7 68.6 42.9 89.5 53.6 46.6 0.7 60.5 22.5 53.0 69.1
Sturgess et al. [40] 84.5 72.6 97.5 72.7 34.1 95.3 34.2 45.7 8.1 77.6 28.5 59.2 83.8
Zhang et al. [47] 85.3 57.3 95.4 69.2 46.5 98.5 23.8 44.3 22.0 38.1 28.7 55.4 82.1
Ladicky et al. [23] 81.5 76.6 96.2 78.7 40.2 93.9 43.0 47.6 14.3 81.5 33.9 62.5 83.8

The sixth and seventh rows of Table 10(b) show

the performance of the temporally coherent setup fol-

lowing contextual MRF smoothing and joint seman-

tic/geometric inference. Somewhat disappointingly, both

versions of the MRF give a very minimal improvement.

This is likely due to a number of factors. First, MRF

energy minimization on the spatiotemporal graph ap-

pears to be a harder problem, and the solutions tend

to show a much greater tendency to oversmooth. Sec-

ond, we gain a big improvement in object boundaries

by incorporating motion cues into the segmentation,

and this is likely diminishing the subsequent power of

the MRF. Recall that in Section 3.3 we have seen a

similar effect: as we made the local appearance model

more powerful by adding features, the improvement af-

forded by the MRF diminished (Figure 8). Finally, joint

semantic/geometric inference introduces very few new

constraints, since the CamVid dataset has only three
non-vertical classes (sky, road, and sidewalk).

For reference, Table 10(c) shows the performance of

recent state-of-the-art methods on the CamVid dataset.

Our system beats [3] and comes close to [23,40,47].

Table 11 gives a more detailed class-by-class compar-

ison. By comparing the first two lines of the table,

we can see that spatiotemporal segmentation gives us

the biggest improvements on the smaller moving object

classes such as car, pedestrian, and bicyclist. In absolute

terms, however, we do not do well on these classes, just

as we did not do well on them in our still image datasets.

Interestingly, spatiotemporal segmentation also gives us

a significant boost on “sidewalk,” which happens to be

similar to the effect we got by using ground truth seg-

mentation on the SIFT Flow dataset (Figure 7). Thus,

it is plausible that the video segmentation gets us closer

to the true object boundaries.

While we do not outperform current state-of-the-art

methods on the CamVid dataset, our results are encour-

aging as our system is the most simple and scalable.

Note that we use the motion information in video only

to improve our segmentation, not to change our fea-

tures. By contrast, [3,40,47] use features derived from

3D point clouds or depth maps, while [23] incorporate

sliding window object detectors. Overall, our experi-

ments on video confirm the flexibility and broad ap-

plicability of our image parsing framework, and give

us additional insights into its strengths and weaknesses

that complement our findings on still image datasets.

5 Discussion

This paper has presented a superpixel-based approach

to image parsing that can take advantage of datasets

consisting of tens of thousands of images annotated

with hundreds of labels. Our underlying feature rep-

resentation, based on multiple appearance descriptors

computed over segmentation regions, is simple and al-

lows new features to be easily incorporated. We also

use efficient MRF optimization to capture label co-

occurrence context, and to jointly label regions with

semantic and geometric classes.

We have demonstrated state-of-the-art results on

the SIFT Flow and LM+SUN datasets with a non-

parametric version of our system based on a two-stage

approach (global retrieval set matching followed by su-

perpixel matching). This framework does not need any

training, except for computation of basic statistics such

as label co-occurrence probabilities, and it relies on just

a few constants that are kept fixed for all datasets. In

principle, it is applicable to “open universe” datasets

where the set of training examples and target classes

may evolve over time. In particular, our results on the

LM+SUN dataset, which has 45,676 images and 232

labels, constitute an important baseline for future ap-

proaches. To our knowledge, it is currently the largest

dense per-pixel image parsing dataset and, unlike most
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other general-purpose image parsing benchmarks, it in-

cludes both outdoor and indoor images. As we have

shown, the latter pose severe recognition challenges,

and deserve more study in the future.

Besides the nonparametric “open universe” regime,

our system has the flexibility to operate with offline

pre-trained classifiers, such as boosted decision trees.

The use of these may be preferable for static datasets

with smaller numbers of classes and a more balanced

class distribution (see the conference version of this pa-

per [41] for additional results on the small-scale Geo-

metric Context [20] and Stanford Background [11] datasets).

Finally, we have demonstrated an extension of our

system to video. This extension segments the video into

spatiotemporal “supervoxels” and uses a simple heuris-

tic to combine local appearance cues across frames. The

resulting approach does not exploit all the motion in-

formation that is potentially available in video (in par-

ticular, it does not attempt to extract 3D geometry),

but it still affords a big improvement over incoherent

frame-by-frame parsing.

Through the extensive analysis of Section 3.3, we

have identified two major limitations of our system.

First, the scene matching step for obtaining the re-

trieval set suffers from an inability of low-level global

features such as GIST to retrieve semantically simi-

lar scenes, resulting in incoherent interpretations (e.g.,

indoor and outdoor class labels mixed together). We

plan to investigate supervised feature learning meth-

ods for improving the semantic consistency of retrieval

sets. Second, our reliance on bottom-up segmentation

really hurts our performance on “thing” classes. Tradi-

tionally, such classes are handled using sliding window

detectors, and there exists work (e.g., [23]) attempting

to incorporate such detectors into region-based parsing.

We are interested in exploring the idea of per-exemplar

detectors [29] to complement our superpixel-based ap-

proach in a manner that still allows for lazy learning in

the “open universe” mode.
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Fig. 13 Example results from the SIFT Flow test set (best viewed in color). The number under each result image is the
percentage of pixels labelled correctly. In (a), joint geometric/semantic inference removes the spurious classification of the sun’s
reflection in the water. In (c), we find some windows (some of which are smoothed away by the MRF) and plausibly classify the
arches at the bottom of the building as doors. In (d), “field” and “desert” never co-occur so “field” wins and “desert” is removed.
In (f), sidewalk is successfully recovered. For complete output on this dataset, see http://www.cs.unc.edu/SuperParsing.
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Fig. 14 Example results from the LM+SUN test set (best viewed in color). For indoor images the geometric label of “sky”
corresponds to the semantic label of “ceiling.” Examples (a-c) show the best performance we can achieve on indoor scenes: we
are able to get wall, ceiling, floor and even get some chairs, bookshelves, beds and desks. Example (d) shows how a retrieval
set of mixed indoor and outdoor images can produce incorrect labels. Examples (e-g) show the varity of images our system
can work on. In (f), we even correct the ground truth label “animal” to the more specific class “bison.”
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Fig. 15 Example results from the CamVid test set (best viewed in color). Still image parsing (third column) is very unstable,
with both the superpixels and their inferred labels changing incoherently from one frame to the next. Temporally incoherent
parsing (fourth column) uses spatiotemporal segmentation, which corrects most of these issues but can still be inconsistent in
time as shown in frames 70 and 100. The final system (fifth column) has temporally consistent segments and labels.
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