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Abstract

This paper presents a framework for image parsing with
multiple label sets. For example, we may want to simul-
taneously label every image region according to its basic-
level object category (car, building, road, tree, etc.), super-
ordinate category (animal, vehicle, manmade object, nat-
ural object, etc.), geometric orientation (horizontal, verti-
cal, etc.), and material (metal, glass, wood, etc.). Some ob-
ject regions may also be given part names (a car can have
wheels, doors, windshield, etc.). We compute co-occurrence
statistics between different label types of the same region to
capture relationships such as “roads are horizontal,” “cars
are made of metal,” “cars have wheels” but “horses have
legs,” and so on. By incorporating these constraints into
a Markov Random Field inference framework and jointly
solving for all the label sets, we are able to improve the
classification accuracy for all the label sets at once, achiev-
ing a richer form of image understanding.

1. Introduction

As a means to understanding the content of an image,
we wish to compute a dense semantic labeling of all its re-
gions. The question is what type of labeling to use. Sim-
ilarly to Shotton et al. [24], we can label image regions
with basic-level category names such as grass, sheep, cat,
and person. Of course, nothing prevents us from assigning
coarser superordinate-level labels such as animal, vehicle,
manmade object, natural object, etc. Similarly to Hoiem et
al. [12], we can assign geometric labels such as horizontal,
vertical and sky. We can also assign material labels such as
skin, metal, wood, glass, etc. Further, some regions belong-
ing to structured, composite objects may be given labels ac-
cording to their part identity: if a region belongs to a car, it
may be a windshield, a wheel, a side door, and so on.

The goal of this paper is to understand scenes on mul-
tiple levels: rather than assigning a single label to each
region, we wish to assign multiple labels simultaneously,
such as a basic-level category name, a superordinate cate-
gory name, material, and part identity. By inferring all the

labelings jointly we can take into account constraints of the
form “roads are horizontal,” “cars are made of metal,” “cars
have wheels” but “horses have legs,” leading to an improved
interpretation of the image.

Recently, there has been a lot of interest in visual repre-
sentations that allow for richer forms of image understand-
ing by incorporating context [4, 20], geometry [7, 10, 12],
attributes [5, 15], hierarchies [3, 8, 18], and language [°].
Our work follows in this vein by incorporating a new type
of semantic cue: the consistency between different types of
labels for the same region. In our framework, relationships
between two different types of labels may be hierarchical
(e.g., acaris a vehicle) or many-to-many (e.g., a wheel may
belong to multiple types of vehicles, while a vehicle may
have many other parts besides a wheel).

Most existing image parsing systems [11, 17, 20, 24]
perform a single-level image labeling according to basic-
level category names. Coarser labelings such as natu-
ral/manmade are sometimes considered, as in [14]. Hoiem
et al. [12] were the first to propose geometric labeling. Hav-
ing a geometric label assigned to each pixel is valuable as
it enables tasks like single-view reconstruction. Gould et
al. [7] have introduced the idea of using two different label
sets: they assign one geometric and one semantic label to
each pixel. In our earlier work [25], we have shown that
joint inference on both label types can improve the classi-
fication rate of each. In this paper we generalize this idea
to handle an arbitrary number of label types. We show how
to formulate the inference problem so that agreement be-
tween different types of labels is enforced, and apply it to
two large-scale datasets with very different characteristics
(Figure 1). Our results show that simultaneous multi-level
inference gives a higher performance than treating each la-
bel set in isolation. Figure 2 illustrates the source of this
improvement. In this image, the basic-level object labeling
is not sure whether the object is an airplane or a bird. How-
ever, the superordinate animal/vehicle labeling is confident
that it is a vehicle, and the materials labeling is confident
that the object is made (mostly) of painted metal. By per-
forming joint inference over all these label sets, the correct
hypothesis, airplane, is allowed to prevail.
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Figure 1. Sample ground truth labelings from our two datasets (see Section 3 for details).
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Figure 2. It’s a bird, it’s a plane! First row: single-level MRF inference for each label set in isolation. Second row: joint multi-level MRF
inference. Animal/vehicle and material labelings are strong enough to correct the object and part labelings.

2. Proposed Approach
2.1. Single-Level Inference

We begin with the single-level image parsing system
from our earlier work [25]. This system first segments an
image into regions or “superpixels” using the method of [6]
and then performs global image labeling by minimizing a
Markov Random Field (MRF) energy function defined over
the field of region labels ¢ = {¢;}:

E(C) = Z Edata(ri; Ci) + A Z Esmooth(cia Cj) )

r,€ER (ri,rj)€EA
ey

where R is the set of all regions, A is the set of adjacent
region pairs, Egata (7, ¢;) is the local data term for region
r; and class label ¢;, and Egpo0th(¢;, ¢;) is the smoothness
penalty for labels c; and c; at adjacent regions 7; and r;.
The data term Fqata(7:, ¢;) is the penalty for assigning
label c; to region r; based on multiple features of r; such

material part

/

vehicle wing

as position, shape, color, texture, etc. It is derived from a
negative log-likelihood ratio score returned either by a non-
parametric nearest neighbor classifier, or by a boosted de-
cision tree (see [25] for details). Specifically, if L(r;,¢;) is
the classifier score for region r; and class c;, then we let

FEaata(ri, ¢i) = wio(L(r4, ¢;)), (2)
where w; is the weight of region r; (simply its relative area
in the image), and o (t) = exp(~vt)/(1+exp(7t)) is the sig-
moid function whose purpose is to “flatten out” responses
with high magnitude.! We set the scale parameter v based
on the ranges of the raw L(r;, ¢;) values (details will be
given in Section 3).

INote that the system of [25] did not use the sigmoid nonlinearity, but
we have found it necessary for the multi-level inference framework of the
next section. Without the sigmoid, extremely negative classifier outputs,
which often occur on the more rare and difficult classes, end up dominat-
ing the multi-level inference, “converting” correct labels on other levels to
incorrect ones. This effect was not evident in [25], where only two label
sets were involved.
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Figure 3. Illustration of our multi-level MRF (eq. 4).

The term Egmootn(ci, ¢;) penalizes unlikely label pairs
at neighboring regions. As in [25], it is given by

—log[(P(cile;) + Plejle:)) /2] x dles # ¢5], (3)

where P(c|c’) is the conditional probability of one region
having label ¢ given that its neighbor has label ¢’; it is es-
timated by counts from the training set (a small constant is
added to the counts to make sure they are never zero). The
two conditionals P(c|c’) and P(c|c) are averaged to make
Egmooth symmetric, and multiplied by the Potts penalty to
make sure that Fgmooth (¢, ¢) = 0. This results in a semi-
metric interaction term, enabling efficient approximate min-
imization of (1) via a8 swap [2, 13].

2.2. Multi-Level Inference

Next, we present our extension of the single-level MRF
objective function (1) to perform simultaneous inference
over multiple label sets. If we have n label sets, then we
want to infer n labelings c', ... c", where ¢! = {cl} is the
vector of labels from the [th set for every region r; € R.
We can visualize the n labelings as being “stacked” together
vertically as shown in Figure 3. “Horizontal” edges connect
labels of neighboring regions in the same level just as in the
single-level setup of Section 2.1, and “vertical” edges con-
nect labels of the same region from two different label sets.
The MRF energy function on the resulting field is

E(Cl, . ,C”) = Z Z Edata(riv Cﬁ)
I r,€R
—i—AZ Z Ehorlz 7,7 J) (4)
I (rir;)€EA
+ﬂz Z Evert za C; )v
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where Eqata(ri, ct) is the data term for region r; and label
c on the Ith level, Eyoriz(cl, ¢ ]) is the single-level smooth-
ing term, Fer¢(ck, c™) is the term that enforces consistency
between the labels of r; drawn from the [th and mth label
sets. Finally, the constants A and p control the amount of
horizontal and vertical smoothing.

A&
X % «

’b X
5 \ RS S5 d &
& @6’ S ‘o‘d *oo ° % b \\é;\\ 49 Q,\oﬁ, QQ’(\?"&\?%‘”&EP IS A b\Q

tOrsO 99 1.9 .97 98 .99 .95 .96 .96 .96 .98 .97 .96 .16 .17 .18 .21 .20 .12 .16 .18 .13 .15 .20 .17 .13 .12 .14

leq 98 .99 .98 .96 .97 .98 .94 .96 .95 .95 .97 .96 .95 .18 .18 .35 .23 .27 32 .12.13 .17 .15 .18 .16 .14 .93 .92

animal wing |96 .96 .95 .94 .95 .95 .92 .94 .93 .94 .95 .94 .93 .94 .93 .09 .13 .07 .16.94 .95 .94 .94 .93 .93 .93 91 91
ear .90 .90 .89 .89 .89 .89 .88 89 .88 .89 89 .89 .88 .89 .88 .88 .87 .21.88 .34 .14 .19 .18 .28 .29 .23 87 87,

horn 87 87 .87 .86 .86 .87 .85 .86 .86 .86 .87 .86 .86 .86 .86 .86 .85 .86 .86 .86 .86 .86 .86 .86 .04 .42 .85 .85

nose .82 .82 .82 .82 .82 .82 .81 .11 .82 .82 .82 .82 .82 .34 .45 .81 .81 .30 .81 .34 .30 .31 .25 .40 .40 .27 .45 .34
wheel 21 .18 .07 .15 .12 .06 31.27/.96 .96.98..97. .9 .97 .96 .95 .93 .97 .95 97 .97 .97 .97 .96 .96 .96 93 .93

hull .98 .98 .97 .96 .97 .97 .94 .95 .95 .06 .06 .07 .95 .96 .95 .94 .93 .96 .94 .96 .96 .96 .96 .95 .95 .95 .92 .92
windshield .09 .21 .52 .16 .26/.94 .15 .92 .92 .92 .94 .26 .92 .93 .92 .92 91 .93 .92 .93 .93 .93 .93 .92 .92 .92 .90 .90
cabin (94 .09 1492 .93 .93 9192 .92 .25 .18.92 2592 .92 .92 .90 .92 .91 .92 .93 .93 92 .92 .92 .92 .90 .90
Windows .07/:92 .91 .90 .91 .91 .89 .26 .23 .31 .19/.90 .90 .90 .90 .90 .89 .90 .90 .91 .91 .91 .90 .90 .90 .90 .88 .88
handlebars (90 91 .90 89 .16 .13 .19/.89 .89 .89 .90 .14|.89 .89 .89 .89 .88 .89 .89 .90 .90 .90 .90 .89 .89 .89 .88 87

Figure 4. A sample of Eye, penalties (eq. 5) for the “object” and
“part” label sets on the CORE dataset (only 12 of the 66 parts are
shown). The values are rescaled to [0, 1]. From the table, we can
see, for example, that elk almost always have horns (a very small
penalty of .04), cows sometimes have horns (a moderate penalty of
.42), and all other classes have no horns. As another example, legs
have a slightly higher penalty for birds than for the other animals,
because they are visible less often.

Ejata and Eyqi, are defined in the same way as in Sec-
tion 2.1. As for the cross-level penalty E.., it is defined
very similarly to to the within-level penalty (3), based on
cross-level co-occurrence statistics from the training set:

Evert(cj, ") = —log[(P(ci|e]") + P(c"e) /2] . (5)

Note that there is no need for a d[c! # ¢™] factor here as
in (3) because the labels in the different label sets are de-
fined to be distinct by construction. Intuitively, Eq can
be thought of as a “soft” penalty that incorporates informa-
tion not only about label compatibility, but also about the
frequencies of different classes. If ¢! and ¢ co-occur often
as two labels of the same region in the training dataset, then
the value of Eye(c!, c™) will be low, and if they rarely
or never co-occur, then the value will be high. For exam-
ple, buildings are very common manmade objects, so the
value of Ey, for “building” and “manmade” would be low.
Traffic lights are also manmade objects, but there are fewer
“traffic light” regions in the training set, so the penalty be-
tween “traffic light” and “manmade” would be higher. We
have found (5) to work well for both many-to-many and hi-
erarchical relationships between label sets. Figure 4 shows
a few of the F, values for objects and parts on the CORE
dataset (Section 3.2).

Finally, before performing graph cut inference, we lin-
early rescale all the values of Fyqi, and Fyept to the range
[0,1] (note that Eg,¢, is already in the range [0, 1] due to
the application of the sigmoid).

3. Experiments
3.1. Barcelona Dataset

Our first dataset is the “Barcelona” dataset from [25]
(originally from LabelMe [23]). It consists of 14,592 train-



Label set Labels | Sample labels in set
Geometric 3 sky, vertical, horizontal
Stuff/thing 2 stuff, thing
Natural/manmade | 2 natural, manmade
Objects 135 road, car, building, ...
Objects+attached 170 window, door, wheel, ...

Table 1. The Barcelona dataset label sets.

ing images of diverse scene types, and 279 test images de-
picting street scenes from Barcelona.

For this dataset, we create five label sets (Table 1)
based on the synonym-corrected annotations from [25].
The largest label set is given by the 170 “semantic” labels
from [25]. Here, we call this set “objects+attached” because
it includes not only object names such as car, building, and
person, but also names of attached objects or parts such as
wheel, door, and crosswalk. Note that ground-truth poly-
gons in LabelMe can overlap; it is common, for example,
for an the image region covered by a “wheel” polygon to
also be covered by a larger “car” polygon. In fact, polygon
overlap in LabelMe is a very rich cue that can even be used
to infer 3D structure [22]. We want our automatically com-
puted labeling to be able to reflect overlap and part relation-
ships, e.g., that the same region can be labeled as “car” and
also “wheel”, or “building” and also “door.” To accomplish
this, we create another label set consisting of a subset of
the “objects+attached” labels corresponding to stand-alone
objects. The 135 labels in this set have a many-to-many
relationship with the ones in the “object+attached” set: a
wheel can belong to a car, a bus or a motorbike, while a car
can have other parts besides a wheel attached to it.

The remaining three label sets represent different group-
ings of the “object+attached” labels. One of these is given
by the “geometric” labels (sky, ground, vertical) from [25].
The other two are “natural/manmade” and “stuff/thing.”
“Stuff” [1] includes classes like road, sky, and mountain;
“things” include car, person, sign, and so on. Just as the
“geometric” assignments from [25], these assignments are
done manually, and are in some cases somewhat arbitrary:
we designate buildings as “stuff” because they tend to take
up large portions of the images, and their complete bound-
aries are usually not visible. Once the multi-level ground
truth labelings are specified, the cross-level co-occurrence
statistics are automatically computed and used to define the
FEert terms as in eq. (5).

To obtain the E 4.1, terms for the different label sets, we
train boosted decision tree classifiers on the smaller “geo-
metric,” “natural/manmade,” and “stuff/thing” sets, and use
the nonparametric nearest-neighbor classifiers from [25] on
the larger “objects” and “objects+attached” sets. This is
consistent with the system of [25], which used the decision
trees for “geometric” classes and the nonparametric classi-
fiers for “semantic” classes.

The scores output by the decision trees and the nonpara-

metric classifiers have different ranges, roughly [—5, 5] and
[—50,50]. We set the respective scale parameters for the
sigmoid in (2) to v = 0.5 and v = 0.05. As for the smooth-
ing constants from (4), we use A = 8 and p = 16 for all
the experiments. Even though these values were set man-
ually, they were not extensively tuned, and we found them
to work well on all label sets and on both of our datasets,
despite their very different characteristics.

Table 2 shows the quantitative results for multi-level in-
ference on the Barcelona dataset. Like [25], we report both
the overall classification rate (the percentage of all ground-
truth pixels that are correctly labeled) and the average of the
per-class rates. The former performance metric reflects pri-
marily how well we do on the most common classes, while
the latter one is more biased towards the rare classes. What
we would really like to see is an improvement in both num-
bers; in our experience, even a small improvement of this
kind is not easy to achieve and tends to be an indication that
“we’re doing someting right” Compared to a baseline that
minimizes the sum of Eq.:, terms (first row of Table 2),
separately minimizing the MRF costs of each level (second
row) tends to raise the overall classification rate but lower
the average per-class rate. This is due to the MRF smooth-
ing out many of the less common classes. By contrast, the
joint multi-level setup (third row) raises both the overall and
the average per-class rates for every label set.

Figure 5 shows the output of our system on a few im-
ages. In these examples, we are able to partially identify
attached objects such as doors, crosswalks, and wheels. On
the whole, though, our system does not currently do a great
job on attached objects: it correctly labels only 13% of the
door pixels, 11% of the crosswalks, and 4% of the wheels.
While our multi-level setup ensures that only plausible “at-
tached” labels get assigned to the corresponding objects, we
don’t yet have any specific mechanism for ensuring that “at-
tached” labels get assigned at all — for example, a wheel
on the “objects+attached” level can still be labeled as “car”
without making much difference in the objective function.
Compounding the difficulty is the fact that our system per-
forms relatively poorly on small objects: they are hard to
segment correctly and MRF inference tends to smooth them
away. Nevertheless, the preliminary results confirm that our
framework is at least expressive enough to support “lay-
ered” labelings.

3.2. CORE Dataset

Our second set of experiments is on the Cross-Category
Object Recognition (CORE) dataset from Farhadi er al.
[5]. This dataset consists of 2,780 images and comes with
ground-truth annotation for four label sets.” Figure 1 shows

2There are also annotations for attribute information, such as “can fly”
or “has four legs,” which we do not use. Note that we use the CORE dataset
differently than Farhadi et al. [5], so we cannot compare with their results.



\ | Geometric | Stuff/thing | Natural/manmade | Objects | Objects+attached |

Base (Eqata only) 91.7 (87.6) | 86.9 (66.7) 87.6 (81.8) 66.1 (9.7) 62.3(7.4)
Single-level MRF (eq. 1) | 91.4 (86.5) | 89.2 (64.2) 88.4 (81.0) 68.2 (8.6) 64.4 (6.5)
Multi-level MRF (eq. 4) | 91.8 (87.6) | 90.3 (66.8) 88.9 (81.8) 69.3 (9.9) 65.2 (7.4)
Two-level MRF [25] 91.5 (86.8) 65.0 (7.3)

Table 2. Barcelona Dataset results. The first number in each cell is the overall per-pixel classification rate, and the second number in
parentheses is the average of the per-class rates. For reference, the bottom row shows the performance of the system of [25], based on joint
inference of only the “geometric” and “objects+attached” label sets. Note that these numbers are not the same as those reported in [25]: in
this paper, we use slightly different ground truth based on an improved method for handling polygon overlap; additional variation may be

due to randomization in the training of boosted decision trees, etc.
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Figure 5. Output of our five-level MRF on sample images from the Barcelona dataset. The number under each image shows the percentage
of pixels labeled correctly. Notice that we are able to correctly classify a wheel (b), parts of the crosswalk (a,c) and a door (d).

a sample annotated image and Table 3 lists the four label
sets. The “objects” set has 28 different labels, of which 15
are animals and 13 are vehicles. The “animal/vehicle” label
set designates each object accordingly. The “material” set
consists of nine different materials and the “part” set con-
sists of 66 different parts such as foot, wheel, wing, etc.
Each CORE image contains exactly one foreground object,
and only that object’s pixels are labeled in the ground truth.
The “material” and “part” sets have a many-to-many rela-
tionship with the object labels; both tend to be even more

The representation of [5] is based on sliding window detectors, and does
not produce dense image labelings. Moreover, while [5] focuses on cross-
category generalization, we focus on exploiting the context encoded in the
relationships between object, material, and part labels.

sparsely labeled than the objects (i.e., not all of an object’s
pixels have part or material labels).

We create validation and test sets of 224 images each
by randomly taking eight images each from the 28 different
object classes. To obtain the data terms, we train a boosted
decision tree classifier for each label in each set. For exam-
ple, we train a “leg” classifier using as positive examples all
regions labeled as “leg” regardless of their object class (elk,
camel, dog, etc.); as negative examples, we use all the re-
gions from the “parts” level that have any label except “leg.”
Note that unlabeled regions are excluded from the training.
The sigmoid parameter in the data term is v = 0.5, the same
as for the decision trees on the Barcelona dataset.



Label Set Labels | Sample labels in set
Foreground/background* | 2 foreground, background
Animal/vehicle 2 animal, vehicle

Objects 28 airplane, alligator, bat, bus, ...
Material 9 fur/hair, glass, rubber, skin, ...
Parts 66 ear, flipper, foot, horn, ...

Table 3. The CORE dataset label sets. *The fore-
ground/background set is excluded from multi-level inference. It
is used separately to generate a mask that is applied to the results
of the other four levels as a post-process (see text).

animal/vehicle

» foreground/background

fur/hair

- . - .
object materia

Figure 6. The output of our multi-level MRF on the CORE dataset.
The ground truth foreground outline is superimposed on every la-
bel set. Note the “objects” level contains numerous small misclas-
sified regions. They could be eliminated with stronger smooth-
ing (higher value of )\ in (4)), but that would also eliminate many
“small” classes, lowering the overall performance on the dataset.

Figure 6 shows the output of four-level inference on an
example image. One problem becomes immediately appar-
ent: our approach, of course, is aimed at dense scene pars-
ing, but the CORE dataset is object-centric. Our inference
formulation knows nothing about object boundaries and all
the data terms are trained on foreground regions only, so
nothing prevents the object labelings from getting extended
across the entire image. At the end of this section, we will
present a method for computing a foreground/background
mask, but in the meantime, we quantitatively evaluate the
multi-level inference by looking at the percentage of pix-
els with ground-truth labels (i.e., foreground pixels) that
we label correctly. The first three rows of Table 4 show
a comparison of the overall and per-class rates on each la-
bel set for the baseline (data terms only), separate single-
level MRF inference, and joint multi-level inference. Even
though CORE is very different from the Barcelona dataset,
the trend is exactly the same: multi-level inference im-
proves both the overall and the average per-class rate for
every label set.

Next, we can observe that each CORE image has only
a single foreground object, so it can contain only one label
each from the “animal/vehicle” and “object” sets. To in-
troduce this global information into the inference, we train
one-vs-all SVM classifiers for the 28 object classes and a bi-
nary SVM for animal/vehicle. The classifiers are based on
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Figure 7. The per-class rates of the 28 objects, 9 materials, and top
18 parts in the CORE dataset. We order the labels by classification
rate. As on the Barcelona dataset, we do worse on the parts that
tend to be small: nose, ear, beak (not shown), and on materials that
have few examples for training: wood, rubber, bare metal.

three global image features: GIST [19], a three-level spa-
tial pyramid [16] with a dictionary size of 200, and an RGB
color histogram. We use a Gaussian kernel for GIST and
histogram intersection kernels for the other two features and
average the kernels. The classifiers are rebalanced on the
validation set by setting their threshold to the point yielding
the equal error rate on the ROC curve. Then, given a query
image, we create a “shortlist” of labels with positive SVM
responses. The multi-level inference is then restricted to us-
ing only those labels. For the animal/vehicle set, only one
label is selected (since the classifier is binary), but for the
object set, multiple labels can be selected. We have found
that selecting multiple labels produces better final results
than winner-take-all, and it still allows our superpixel clas-
sifier to to have some influence in determining which ob-
ject is present in the image. The last three rows of Table 4
show that the SVMs add 3.3% to the accuracy of the “ani-
mal/vehicle” level and 6.0% to “object.” More significantly,
the joint inference is able to capitalize on these improve-
ments and boost performance on materials and parts, even
though the SVMs do not work on them directly. Figure 7
shows final classification rates for a selection of classes.
There still remains the issue of distinguishing foreground
from background regions. To do this, we first train a boosted
decision tree classifier using all the labeled (resp. unla-
beled) training image regions as positive (resp. negative)
data. This classifier correctly labels 64.7% of foreground
pixels and 94.3% of background pixels. The resulting fore-
ground masks are not very visually appealing, as shown in
Figure 8. To improve segmentation quality we augment the
foreground/background data term obtained from this clas-
sifier with an image-specific color model based on Grab-
Cut [21]. The color model (a Gaussian mixture with 40
centers in LAB space) is initialized in each image from the
foreground mask output by the classifier and combined with
the foreground/background data term in a pixelwise graph



Animal/vehicle Object Material Part
Base 86.6 (86.6) 344 (33.4) | 51.8(36.0) | 37.1(11.2)
Single-level MRF 91.1 (91.0) 432 (41.7) | 54.1(34.3) | 42.6 (11.7)
Multi-level MRF 91.9 (92.0) 445 (43.1) | 54.9(35.9) | 42.7(11.9)
Base + SVM 92.8 (92.9) 43.5(41.8) | 51.8(36.0) | 37.1(11.2)
Single-level MRF + SVM 92.8(92.9) 53.2(50.5) | 54.1 (34.3) | 42.6 (11.7)
Multi-level MRF + SVM 92.8 (92.9) 53.9 (51.0) | 56.4 (36.7) | 43.9 (12.3)

Table 4. CORE dataset results. The first number in each cell is the overall per-pixel classification rate, and the number in parentheses is
the average of the per-class rates. All rates are computed as the proportion of ground-truth foreground pixels correctly labeled. The bottom
three rows show results for using global SVM classifiers to reduce the possible labels in the animal/vehicle and object label sets (see text).

cut energy:

E(c) = Z[aEcolor(pi, ¢i) + Edata(pi, ¢i)]

pi

(6)
+>\ Z Esmooth (Ci7 Cj) )

(pipj)EA

where p; and p; are now pixels, A is the set of all adja-
cent pixels (we use eight-connected neigborhoods), Ecojor
is the GrabCut color model term (see [21] for details), Fqata
is the foreground/background classifier term for the region
containing the given pixel (not weighted by region area),
and Egnootn 1S obtained by scaling our previous smoothing
penalty (3) by a per-pixel contrast-sensitive constant (see,
e.g., [24]). Finally, « is the weight for the GrabCut color
model and X is the smoothing weight. We use @ = 8 and
A = 8 in the implementation.

After performing graph cut inference on (6) we update
the color model based on the new foreground estimate and
iterate as in [21]. After four iterations, the foreground rate
improves from 64.7% to 76.9%, and the background rate
improves from 94.3% to 94.4%. In addition, as shown in
Figure 8, the subjective quality of the foreground masks
generated with this approach becomes much better. Fig-
ure 9 shows the output of the four-level solver on a few test
images with the estimated foreground masks superimposed.

Unfortunately, the role played by foreground masks in
our present system is largely cosmetic. Due to the fact that
(4) and (6) are defined on different domains (regions vs.
pixels) and use different types of inference, we have not
found an easy way to integrate the multi-level labeling with
the iterative GrabCut-like foreground/background segmen-
tation. Unifying the two respective objectives into a single
optimization is subject for our future work.

4. Discussion

This paper has presented a multi-level inference formu-
lation to simultaneously assign multiple labels to each im-
age region while enforcing agreement between the differ-
ent label sets. Our system is flexible enough to capture
a variety of relationships between label sets, including hi-
erarchies and many-to-many. The interaction penalties for

Figure 8. Example of foreground masks our color model generates
on the CORE dataset. The second column shows the likelihood
map from our foreground region classifier; the third column shows
the foreground mask resulting from that classifier; and the fourth
column shows the foreground map obtained with a GrabCut-like
color model. The color model generally improves reasonable ini-
tial foreground estimates (first two rows), but makes bad initial
estimates worse (last row).

different label sets are computed automatically based on la-
bel co-occurrence statistics. We have applied the proposed
framework to two challenging and very different datasets
and have obtained consistent improvements across every la-
bel set, thus demonstrating the promise of a new form of
semantic context.

In the future, we plan to explore multi-level inference
with different topologies. In the topology used in this paper
(Figure 3), only the labels of the same region are connected
across levels, and each level is connected to every other
one. However, the graph cut inference framework can
accommodate arbitrary topologies. One possibility is a
multi-level hierarchy where levels are connected pairwise.
Another possibility is connecting a region in each level
to multiple regions on other levels. This could be useful
for parsing of video sequences, where each level would
correspond to a different frame and connections between
levels would represent temporal correspondence.
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Figure 9. The output of our multi-level MRF on the CORE dataset after masking the label sets with our estimated foreground masks. The
number under each image is the percentage of ground-truth pixels we label correctly. Note that we are able to correctly classify a number
of parts (b,c,d) though those parts do have a tendency to spill into nearby regions of the image.
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