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Abstract

In this work, we address the issue of geometric verification, with a focus on modeling
large-scale landmark image collections gathered from the internet. In particular, we show
that we can compute and learn descriptive statistics pertaining to the image collection by
leveraging information that arises as a by-product of the matching and verification stages.
In turn, this learned information can be used to significantly improve the efficiency of the
overall system. Our approach is based on the intuition that matching numerous image
pairs of the same geometric scene structures quickly reveals useful information about
two aspects of the image collection: (a) the validity of individual visual words and (b)
the appearance of landmarks in the image collection. Both of these sources of informa-
tion can then be used to drive any subsequent processing, thus allowing the system to
bootstrap itself. While current techniques make use of dedicated training/preprocessing
stages, our approach elegantly integrates into the standard geometric verification pipeline
of typical internet photo collection reconstruction systems, by simply leveraging the in-
formation revealed during the verification stage. The main result of this work is that this
“learning-as-you-go” approach significantly improves performance; our experiments on
large scale internet photo collections demonstrate significant improvements in efficiency
and completeness over standard techniques.

1 Introduction

Our main focus in this work is the issue of geometric verification, which is a fundamental
component of any system that seeks to model large scale contaminated photo collections
gathered from the internet [1, 6, 16, 18]. Recent years have seen remarkable progress in
this area, and current systems are capable of producing 3D models from city-scale datasets
containing hundreds of thousands, or even millions of images, within a fairly short time
span [1, 6]. In this work, we seek to improve the efficiency of these state of the art approaches
by addressing one of the most computationally expensive operations in this process.

In designing a 3D reconstruction system for internet photo collections, one of the key
considerations is robustness to “clutter” — when operating on datasets downloaded using key-
word searches on community photo sharing websites (such as Flickr), it has been observed
that invariably, a large fraction of images in the collection are unsuitable for the purposes of
3D reconstruction [7, 16]. In addition, these datasets are “unorganized”, meaning that we
have no information about the spatial relationships, if any, between the images. Thus, one of
the fundamental steps in a 3D reconstruction system is geometric verification: the process of
determining which images in an internet photo collection are geometrically related to each

(© 2012. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.


Citation
Citation
{Agarwal, Snavely, Simon, Seitz, and Szeliski} 2009

Citation
Citation
{Frahm, Fite-Georgel, Gallup, Johnson, Raguram, Wu, Jen, Dunn, Clipp, Lazebnik, and Pollefeys} 2010

Citation
Citation
{Raguram, Wu, Frahm, and Lazebnik} 2011

Citation
Citation
{Snavely, Seitz, and Szeliski} 2008

Citation
Citation
{Agarwal, Snavely, Simon, Seitz, and Szeliski} 2009

Citation
Citation
{Frahm, Fite-Georgel, Gallup, Johnson, Raguram, Wu, Jen, Dunn, Clipp, Lazebnik, and Pollefeys} 2010

Citation
Citation
{Kennedy, Chang, and Kozintsev} 2006

Citation
Citation
{Raguram, Wu, Frahm, and Lazebnik} 2011


2 AUTHOR(S): BMVC AUTHOR GUIDELINES

other (i.e., images of the same 3D scene). This is a computationally expensively step; a
simple exhaustive pairwise comparison of images leads to a quadratic algorithm that cannot
scale to handle large scale image collections with hundreds of thousands of images. Thus,
much work in recent years has focused on developing efficient ways to perform this compar-
ison. For example, Agarwal et al. [1] use image retrieval techniques to detemine, for every
image in the dataset, a small set of candidate images to match against. An alternate approach,
adopted by Frahm et al. [6], is to first cluster the images based on global image descriptors,
which provides a rough grouping based on viewpoint, and to then perform the verification
within each cluster. These approaches have proved to be very efficient — for instance, in [6],
it was shown that datasets containing up to 3 million images could be processed in approxi-
mately 24 hours, leading to dense 3D models. While this is extremely promising, there are
still some limitations to this approach. For instance, even the carefullly optimized approach
described in [6] spends approximately 50% of the processing time simply verifying image
pairs against each other. In addition, the approach in [6] suffers from “incompleteness”; due
to the coarse clustering, a very large fraction of images are discarded immediately following
the clustering and verification steps (for e.g., over 95% of the images in the collection remain
unmatched following these steps). In this work, we aim to overcome these limitations.

Thus far, the typical way to peform geometric verification has been to estimate the ge-
ometric relationship between pairs independently, which does not fully exploit the specific
characteristics of the dataset. Our key insight in this work is simple: as the geometric ver-
ification progresses, we learn information about the image collection, and subsequently use
this learned infomation to improve efficiency and completeness. More specifically, since
images of the same geometric structures are being repeatedly verified against each other, this
process of repeated matching reveals useful information about (a) the stability and validity
of low-level image features and (b) the global appearance of the various landmarks in the
image collection. While current techniques either ignore this information, or leverage it for
other tasks via an offline processing stage, our system feeds this information directly back
into the verification pipeline. Our approach, while extremely simple, is also very effective
— our results on a variety of challenging datasets demonstrate significant improvements in
efficiency compared to current techniques.

2 Related Work

Recent years have seen remarkable advances with respect to the modeling, organization and
visualization of large-scale, heavily contaminated image collections gathered from the in-
ternet. As noted earlier, the recent approaches of [1, 6] are capable of producing 3D re-
constructions of city-scale landmark image collections containing millions of images. To
handle datasets of this magnitude, these approaches have primarily focused on exploiting the
parallelism inherent in the problem, either by using clusters of computers [1] or GPUs [6].
However, far less attention has been paid to redundancy, in that images of the same geomet-
ric structures are verified against each other time and time again. While this cue has gone
mostly ignored, we show that incorporating this information into the standard reconstruction
pipeline can result in a significant computational benefit.

Also relevant to our approach are techniques for the related problem of location recogni-
tion, where the goal is to efficiently identify and return images that are geometrically related
to a given query image. Given that efficiency and accuracy are important in this setting, a
number of recent approaches have addressed the problem of learning how to select informa-
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tive image features (or, alternatively, suppressing uninformative features) during the process
of image retrieval [8, 10, 12, 19]. While similar in spirit to our idea, our goal is quite different
— our aim is to fullly utilize this information in an online way. This is a distinguishing char-
acteristic from current techniques that have thus far obtained this information via an offline,
preprocessing step, or through a post-hoc phase that simply uses the output of structure-
from-motion on the entire dataset. We argue that it is possible to take this simple idea one
step further —i.e., to incorporate it into the standard reconstruction pipeline itself. Since this
information is, in some sense, a byproduct of the process of geometric verification, it can
easily be fed back into the system, instead of being ignored or recomputed later. In addition,
in contrast to techniques such as [8, 10, 19], which operate at the feature level (i.e., using
the results of exhaustive geometric verification to either prioritize or prune image features
for every image in the dataset), our approach explores the weighting of visual words. In this
respect, our approach is similar to that of [12], which uses an offline training stage to identify
a subset of the visual vocabulary that contains information that is most useful for landmark
identification. However, in contrast to this approach, we do not require a dedicated learning
stage or any labeled training datasets; our system incrementally learns as it processes new
image pairs, and efficiently uses this information to bootstrap any subsequent processing.

There has been some recent work related to the problem of identifying landmark images
in large-scale image collections [9, 20, 21]. Our approach differs from these in that we do
not require any manually labeled training imagery, as in [9]. In addition, we do not require
images to have any associated geotags or GPS information, as required in [21], and we
also do not require full structure-from-motion to be carried out on the entire dataset, as in
[20]. Also note that our goal in this work is somewhat different - we aim to improve the
efficiency of the geometric verification stage, by making use of information that is revealed
as a byproduct of this step; our focus is thus on simple, but very efficient methods that do
not require computationally intensive preprocessing stages, or manual labeling effort.

3 Efficient Large-scale Image Registration

3.1 Identifying useful visual words

As noted earlier, current approaches take a somewhat pessimistic view to the problem of geo-
metric verification, by independently computing the two-view geometry for each image pair.
In other words, given a pair of images, features are matched between the images to obtain a
set of putative correspondences, and then a robust estimation algorithm (e.g., RANSAC [5],
or one of its more efficient variants) is used to identify a set of inliers. This process then
repeats for the next pair of images, typically ignoring the results produced by any previous
rounds of verification. We adopt a different strategy: namely, our intuition is that this pro-
cess of repeated verification reveals useful information about the validity of low-level image
features. More specifically, considering a bag-of-visual-words framework, our goal is to
identify visual words that are more stable, and more likely to be geometrically consistent.
As an example, consider Figure 1(a), which shows all detected SIFT [11] features for a
single image. Note that a large number of features lie in areas of the image that are very
unlikely to pass any geometric consistency check (for e.g., features detected on vegetation,
on people, and in the sky). Now, if we have previously verified other images of the same
scene, we can weight each visual word in the current image by the number of times that the
word has previously passed the geometric consistency check in other image pairs — these
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(@ (b)

Figure 1: (a) All detected features for a single image (b) Features filtered based on the results
of geometric verification. In this example, we only display features corresponding to visual
words that were found to be inliers in at least 10 previous image pairs. The features in (b)
are heatmap colour coded based on the inlier counts.

results are visualized in Figure 1(b). Note, in particular, that this weighting has two effects:
(1) it emphasizes visual words that are stable, repeatable, and more likely to be geometri-
cally consistent and (2) suppresses visual words that are very unlikely to pass the geometric
consistency check. Thus, the main idea is to incrementally accumulate this kind informa-
tion, and then leverage it to improve the efficiency of the overall system. This idea has been
explored to some extent in recent work [8, 19], but at the feature-level. In other words, a
preprocessing step determines, for every image in the dataset, which features are likely to
be useful (or, alternatively, which are likely to be “confusing”). Our approach extends on
this idea in two ways: (1) we work at the visual word level, which in turn allows us to pre-
dict, for a never before seen image, which features are likely to be geometrically consistent,
and (2) since our goal is geometric verification, we incorporate this visual word prioritiza-
tion strategy into the verification step itself (i.e., no preprocessing or labeling of images is
required).

3.1.1 Computing visual word priorities

In the interests of computational efficiency, we adopt a very simple strategy to identify po-
tentially useful visual words. Consider a visual vocabulary, W = {w,wy,...,wn}, consisting
of N visual words. Typically, this vocabulary is generated by (approximate) k-means clus-
tering, using a diverse set of image descriptors [14]. In addition, consider a set of visual
word priorities, C = {cy,ca,...,cn}, Where each ¢; represents, in some sense, a score that
is proportional to the validity of the visual word. In the absence of any prior information,
we start by assigning each of these visual words the same priority (i.e., ¢; = 0,Vi). We then
carry out geometric verification on the image collection, selecting image pairs using either
the retrieval-based method as in [1], or the clustering based-method as in [6]. For each pair
of images, this step typically involves matching features between the images to obtain a set
of putative correpondences, and then running RANSAC [5] to identify a set of inliers.

Each pair of matching features is associated with a visual word from the set W (for
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simplicity, we ignore for now the case where a pair of matched features gets assigned to
different visual words in each image; we will return to this point later). For every pair of
images that we successfully verify (where a “success” is considered to be a pair of images
with > [ inliers; commonly chosen values of / range between 15-20), we then update the
priority of the inlier visual words based on the results of this process. The simplest possible
scheme would consider the set C to be a set of inlier counts — in other words, for each feature
match that was found to be an inlier, we update a count ¢; for the corresponding visual word.
Intuitively, over time, this weighting has two effects: (1) it emphasizes visual words that
are matched across many images pairs — thus, prioritizing words that are more likely to be
geometrically consistent and (2) suppresses visual words that repeatedly fail the consistency
check. We expect that this set of counts will gradually reveal useful information about the
validity of the words. Below, we describe how these counts can be leveraged for improving
the efficiency of robust estimation.

3.1.2 Improving RANSAC sampling

One immediate application of the visual word priorities is to improve the efficiency of robust
estimation. For simplicity, assume we are given a set of counts C = {c|,¢3, ...,cy }, obtained
by matching a set of image pairs. This weighting of visual words can then be incorporated
into a RANSAC framework that biases the sampling in favour of the more reliable words.
While current techniques either ignore this information, or leverage it for other tasks via an
offline preprocessing/postprocessing stage, we propose to feed this information directly back
into the verification pipeline.

Over the past decade, a number of improvements to RANSAC have been proposed, each
addressing a specific weakness of the original algorithm [2, 3, 13, 15, 17]. Most relevant to
this work are techniques that perform non-uniform sampling of the data points, using some
form of prior information. Two recent examples of this category are PROSAC [2], which
uses ordering information to preferentially sample points based on their rank and Group-
SAC [13], which partitions points into groups based on some kind of similarity information,
with the intuition being that inlier points will tend to form large, salient groupings. Given the
set of inlier counts C, it is clear that this information can very easily be incorporated into a
PROSAC-style sampling strategy. In particular, given a pair of images, consider a set S con-
taining M matched points, X; <> x;, fori=1,...,M. For each matched feature in S, we have
a corresponding visual word w;, with associated count ¢;. We then order the matches in S
based on the counts c;, and then carry out PROSAC-style sampling. PROSAC can be viewed
as a process that starts by deterministically testing the most promising hypotheses (gener-
ated from the most promising data points), and gradually shifting to the sampling strategy of
RANSAC as the confidence in the a priori sorting based on quality scores decreases. The
improvement in efficiency rests on the weak assumption that the ordering defined by the
quality score is no worse than a random ordering. Indeed, PROSAC is designed to draw the
same samples as RANSAC, but in a more meaningful order.

It is worth noting that thus far, virtually the only kind of ordering information that has
been used in PROSAC has been purely image-to-image [2, 13, 15, 17]. In other words, given
a set of matched features for an image pair, the ordering of matches is determined, for in-
stance, using some function of the SIFT matching score (e.g., ordering matches based on the
ratio of the distances in the SIFT space of the best and second best match). Note that this or-
dering does not leverage any information from prior matching rounds — in other words, each
pair of images is verified completely independently of the others. This scheme thus discards


Citation
Citation
{Chum and Matas} 2005

Citation
Citation
{Chum and Matas} 2008

Citation
Citation
{Ni, Jin, and Dellaert} 2009

Citation
Citation
{Raguram, Frahm, and Pollefeys} 2008

Citation
Citation
{Sattler, Leibe, and Kobbelt} 2009

Citation
Citation
{Chum and Matas} 2005

Citation
Citation
{Ni, Jin, and Dellaert} 2009

Citation
Citation
{Chum and Matas} 2005

Citation
Citation
{Ni, Jin, and Dellaert} 2009

Citation
Citation
{Raguram, Frahm, and Pollefeys} 2008

Citation
Citation
{Sattler, Leibe, and Kobbelt} 2009


6 AUTHOR(S): BMVC AUTHOR GUIDELINES

potentially very useful information that arises as a byproduct of the verification. Particularly
for the case of photo collections, where images of the same 3D scenes are repeatedly en-
countered, there is much to be gained by altering the ordering scheme to take prior matching
results into account. We adopt precisely this strategy, sorting the set of matches based on
the number of times the correponding visual words have been previously verified as being
inliers. As we will show in the results in Section ZZZ, this ordering strategy results in an
appreciable improvement in efficiency compared to the standard image-to-image ordering
technique.

3.2 Identifying landmark images

Section 3.1 described an approach to identifying promising visual words, using information
generated via repeated matching of image pairs. In many cases, it is possible to learn addi-
tional useful information as well during this process. For instance, once we have obtained a
sufficiently large set of succesfully verified image pairs, we hypothesize that this set captures
useful information about the global appearance of various landmarks in the dataset. More
specifically, consider the system of [6], which uses a clustering-based approach to first group
images by (approximate) viewpoint, and then verifies these viewpoint clusters to obtain a set
of iconic images. These iconic images, in some sense, represent a concise summary of the
entire image collection, and typically contain a diverse set of views of the various landmarks
present in the dataset. We observe that this information can then be used to train a classifier
to recognize landmark images. One of the limitations of the approach of [6] is that the clus-
tering and verification steps are only approximate, and often, a significant fraction of images
in the dataset are rejected as being irrelevant. One possible approach to increasing the num-
ber of registered images is to carry out a second “re-verification” stage, where each rejected
image is matched to a small set of iconics (obtained, for instance, by using image retrieval
techniques). However, this step is prohibitively expensive, particularly for very large scale
image collections, where the number of rejected images is on the order of a few million. In
this context, having a trained model of landmark appearance is potentially very useful, since
this would allow us to only verify those images that are likely to be landmark images and
discard the rest.

This stage of our system operates as follows: as images are processed in the pipeline
described in [6], we identify a subset of these images as verified landmark images (“icon-
ics”). These images constitute a set of positive training examples to train a landmark-vs.-non
landmark classifier. In order to obtain negative training examples, we sample randomly from
the set of rejected images, and attempt to register the sampled image against the set of icon-
ics. If this process fails, it is very likely that the sampled image is a non-landmark image,
and we add this to the negative training pool. This process repeats until a sufficient number
(on the order of a few thousand) negative training images have been found. Following this,
we train a simple binary classifier to distinguish landmark images from non-landmark im-
ages. To build this classifier, we continue to leverage our same visual vocabulary (W), but
now use it to build a standard bag of visual words (a histogram of the visual words) image
descriptor for each training image. We use this descriptor to train a linear support vector
machine (SVM) classifier. Once trained, we run the classifier on each image before verifica-
tion. If the classifier has a positive response we continue with geometric verification, but if
the response is negative we reject the image immediately, thus saving the compute time of
geometric verification. Detailed analysis of the performance of this classifier can be found
in Section ??.
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(a) (b)

Figure 2: (a) Putative features matches and (b) inliers. In this case, the inlier ratio is =~ 20%.

4 Results

4.1 Robust estimation

We first evalute the effect of the modified ordering scheme based on visual words counts, on
the robust estimation stage. We adopt a recent high-performance RANSAC variant, called
ARRSAC [15], which integrates PROSAC-style sampling into a real-time robust estimation
framework. We report results on two different experiments, representing different usage
scenarios. In the first case, we consider a dataset of 10000 images representing a single
landmark (the Berlin Dome). This dataset is relatively clean, though a small fraction (= 5%)
of unrelated images are present in the dataset. We process this dataset using the approach
of [1], by retrieving 20 match candidates for each image in the dataset, and performing geo-
metric verification. In the second experiment, we process a much larger dataset, containing
2.8 million images of Berlin. To handle datasets of this magnitude, we use the implemen-
tation described in [6]. In both of these experiments, we compare the performance of (a)
baseline RANSAC, (b) ARRSAC with image-to-image ordering (based on SIFT matching
scores) and (¢) ARRSAC with ordering based on visual words.

A specific example is shown Figure 2(a). A subset of the putative feature matches are
shown. The inlier ratio for this image pair is significantly low (= 20%), due to large changes
in viewpoint and scale, coupled with repetitive patterns and symmetries. For this low inlier
ratio, standard RANSAC would require close to 360000 samples, which is computationally
prohibitive. A more optimized technique, such as PROSAC (refer Section 3.1.1), which
leverages non-uniform sampling based on feature matching scores, requires about 20000
samples on average. It is worth noting that thus far, virtually the only weighting scheme
that has been explored with PROSAC and other non-uniform sampling techniques is purely
image-to-image; in other words, only using the feature matching scores between a single pair
of images. Altering this weighting scheme to take the results of geometric verification into
account has a significant benefit; for the image pair in Figure 2, this reduces the number of
samples required to approximately 500 on average - this represents a factor of 40 reduction
compared to the traditional weighting employed in PROSAC. More generally, our initial ex-
periments with small-scale datasets (containing on the order of a thousand images of a single
landmark) indicate that this is a promising direction for research that could potentially accel-
erate the geometric verification step significantly. We propose to investigate this approach
more thoroughly on challenging large-scale datasets containing multiple landmarks.
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Highest Scorring Verified Images

221 2.16

Lowest Scorring Verified Images

STA)TGEIS% “
81 -0.74

-1.39 -0. -0.62 -0.59

Figure 3: The top and bottom five images according to our classifier that do geometrically
verify to some iconic image. Notice that, though the lowest scoring images do verity, it is
actually good the classifier rejected them as they are not of landmarks, while the top five
images are clearly landmark images.

4.2 Landmark classification

4.3 Identifying landmark images

After we have identified our iconic images we have only verified roughly 3% of the images
in our dataset. We now wish to run geometric verification between the remaining 97% of
the dataset and our iconic images. This however is quite slow as most will fail verification
(failed verifications are much slower than successful verifications). To reduce the number
of images we verify we use our linear SVM classifier to first weed out images that do not
resemble any iconic image.

To train our SVM we take all iconic images as our positive training images. We then run
our verification on random images until we have found an equal number of images that do
not verify to any of our iconic images, these are our negative training images. For each image
we compute a bag-of-visual-words histogram from the visual words already computed for
RANSAC. Because on average there are < 2000>? visual words per image and our histogram
has 1 million dimensions, our feature is very sparse. We take advantage of this sparsity at
training time by using the very fast linear svm library of Fan et al. [4]. We are able to
train our svm with 20,000 training images with 1 million dimensional feature vectors in 8.6
seconds. At test time the classifier evaluation is a sparse inner product which amounts to a
1-3 thousand multiplications. In out tests a classifier evaluation took less the 10~ seconds.

To measure the performance of our classifier we create a test set by running geometric
verification on a random subset of the images that have yet to be verified, positive examples
being images that do verify to an iconic image and negative examples being images that
do not verify to any iconic image. We would like our classifier to have a number of key
properties. First, we would like it to not miss too many images that would verify against
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an iconic image. To measure this we look at the true positive rate, which on our test set is
69.5%. This may seem low but we found that, while the images the classifier rejected did
verify to some iconic, they were most often not landmark images as shown in Figure 3.

Next, we want the total number of images for which our classifier fires on, and for which
we then run geometric verification on, to be low. Our classifier fires on 25.9% of test images,
allowing 74.1% of images to be rejected without verification, amounting to at least a 4x
speed up. Finally, the verification runs much faster on images that do verify than ones that
don’t so it is also important that of the images that the classifier fires on a high percentage
of those images are verified. On our test set 31.1% of these images do verify compared to
11.5% across the full test set, which in effect gives and additional XX speedup.

Over all we get a speed up of XX from the classifier alone and XX when combined with
the visual word based RANSAC. <— REWORD

5 Conclusion
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