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Image parsing
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Rabinovich et al. (2007), Galleguillos et al. (2008), Brostow et al. (2008), Gould et al. (2009),
Sturgess et al. (2009), Zhang et al. (2010), Ladicky et al. (2010), Liu et al. (2011), Floros et al. (2011),
Farabet et al. (2012), Eigen and Fergus (2012), Myeong et al. (2012)



Towards broader coverage

Hundreds of classes and tens of thousands of images

Millions of Pixels

http://labelme.csail.mit.edu/



Our previous work region-based parsing
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SuperParsing: Scalable Nonparametric Image Parsing with Superpixels
J. Tighe and S. Lazebnik, ECCV 2010, IJCV 2013



Finding Things
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To get the things, use detectors
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Lubor Ladicky, Paul Sturgess, Karteek Alahari, Chris Russell, Philip H.S. Torr
What, Where & How Many? Combining Object Detectors and CRFs. In ECCV 2010



Problems with standard sliding
window detectors

They return only bounding box hypotheses, and obtaining
segmentation hypotheses from them is challenging

They do not work well for classes with few training examples
and large intra-class variation
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SVMs for Object Detection and Beyond. In ICCV 2011
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Our approach
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Detector-based data term




Query image

Ground truth
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Region-based parsing result (67.2%)

building

Ground truth

taxi car

taxi M truck ,
Mcar person < I
a P:;'g'”g - \rga:]llbox road building Detector-based parsing result (50.8%)
M sky M window

fence M trash can

M sidewalk M manhole
W streetlight M traffic light



Ground truth

taxi M truck

M car person

M building M mailbox
road van

M sky B window
fence M trash can

M sidewalk M manhole
W streetlight M traffic light

building

Region-based parsing result (67.2%)

Detector-based parsing result (50.8%)



Query image

Ground truth
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Datasets

Evaluation

Training Images Test Images Labels
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Quantitative evaluation

Region-based Detector-based Region + Detector

Combined
SIFT Flow (Liu et al., 2009) 77.7 (32.8) 71.1(26.7) 78.6 (39.2)
LabelMe+SUN 58.3 (5.9) 52.5(11.3) 61.4 (15.2)

Per-pixel rate (average per-class rate)

SIFT Flow
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Toward Broad Coverage
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Comparison to state of the art

SIFT Flow Per-Pixel Per-Class
Our approach 78.6 39.2
Tighe and Lazebnik (2013) 77.0 30.1
Liu et al. (2011) 76.7 N/A
Farabet et al. (2012) 78.5 29.6
Farabet et al. balanced (2012) 74.2 46.0
Eigen and Fergus (2012) 77.1 32.5
Myeong et al. (2012) 77.1 32.3




Comparison to state of the art

LabelMe+SUN Per-Pixel Per-Class

Our approach 61.4 15.2
Outdoor 65.5 15.3
Indoor 46.3 12.2

Tighe and Lazebnik (2013) 54.9 7.1
Outdoor 60.8 7.7
Indoor 32.1 4.8




Now what?

* Other researchers should push for bigger
datasets, broader coverage

 For us — lots more work to do

— Improve computational efficiency of exemplar
SVM training: try whitened HOG approach of
Hariharan et al. (ECCV 2012)

— Leverage the object separation the per-exemplar
detectors are already providing to separate the
objects in our final parsing



Code and data publicly available on our websites:
ttp://www.cs.unc.ed
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http://www.cs.unc.edu/~jtighe/Papers/CVPR13/
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