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Abstract

We consider the problem of estimating the relative depth
of a scene from a monocular image. The dark channel
prior, used as a statistical observation of haze free images,
has been previously leveraged for haze removal and relative
depth estimation tasks. However, as a local measure, it fails
to account for higher order semantic relationship among
scene elements. We propose a dual channel prior used for
identifying pixels that are unlikely to comply with the dark
channel assumption, leading to erroneous depth estimates.
We further leverage semantic segmentation information and
patch match label propagation to enforce semantically con-
sistent geometric priors. Experiments illustrate the quan-
titative and qualitative advantages of our approach when
compared to state of the art methods.

1. Introduction

Recovering depth from images is a fundamental problem
in computer vision, and has important applications includ-
ing robotics, surveillance, scene understanding and 3D re-
construction. Most work on visual reconstruction and depth
estimation has focused on leveraging multi-view correspon-
dences for depth estimation leaving out the case of single
image based depth estimation. The ubiquity of monocu-
lar imaging systems in consumer products provides a large
collection of archived imagery for which multiple view ap-
proaches are not applicable. We consider the problem of
estimating relative depth from a single monocular image to
infer structural information within the imaged scene.

Recent work on single view depth estimation [6, 11, 15]
has focused on extracting image features and geometric in-
formation, in order to apply machine learning techniques
to approximate a direct mapping from image features to
absolute or relative depth. However, since visual appear-
ance is generally insufficient to resolve depth ambiguities, a
tremendous burden is posed on the learning algorithm to im-

Input image 

Depth via dark 
channel 

Error prediction Semantic prior 

PatchMatch fix 

Relative depth 

Figure 1. Overview of our proposed approach for non-parametric
single view relative depth estimation. Our approach combines
PatchMatch depth propagation with semantic priors to achieve se-
mantically congruent results.

plicitly reason about the ambiguities. Conversely, the depth
perception ability of humans relies on semantic understand-
ing of a scene intuitively. Liu et al. [12] incorporated se-
mantic knowledge to unburden the learning algorithm, ex-
ploiting geometry priors of each semantic class to simplify
the depth prediction model.

We propose a simple monocular depth estimation
method, which builds upon previous work based on the dark
channel prior [8]. We utilize the dark channel prior to get
an initial relative depth estimate. Then we introduce a com-
plementary bright channel to identify potentially erroneous
depth estimates attained from the dark channel prior. Ad-
ditionally, we leverage semantic information to develop a
depth propagation framework to correct pixel depth esti-
mates for which the dark channel prior is misleading. Fig-
ure 1 depicts an overview of our pipeline. Our method is
therefore able to use a single image to achieve semantically
congruent depth estimates (See Figure 2 for an example).

2. Related Work

Different approaches have been explored to address the
problem of understanding 3D information from monocular
images. Our approach is inspired by the relative depth es-
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Figure 2. Depth estimation results. Black to yellow gradient depicts increasing scene depth. (a) Input image. (b) Depth estimation by
Make3D[15]. (c) Depth estimation by dark channel prior alone[8]. (d) Depth estimation using our approach. Correct depth ordering and
detailed depth boundaries are obtained by our approach in image regions not complying with the dark channel prior (e.g. road surface).

timation of patches as a function of haze through the dark
channel prior proposed by He et al. [8]. In order to esti-
mate the haze it also determines the global atmospheric light
as the RGB value of the brightest pixel in the dark chan-
nel. To further improve the accuracy of the atmospheric
light component Yeh et al. [20] introduce the bright channel
prior. They leverage the difference between dark channel
and bright channel for estimating the improved global at-
mospheric light. Our approach takes this further by leverag-
ing the difference between dark and bright channel prior to
predict unreliable depth estimates caused by the visual ap-
pearance of the patches as for example observed for bright
scene parts.

Zhou et al. [21] built optical models by placing an opti-
cal diffuser between the camera lens and the scene, obtain-
ing depth estimates from the modeling of the diffused imag-
ing process. Similarly, Chen et al. [3] built self-calibrating
cameras through optical reflections. Such optical models re-
quire extra imaging devices at imaging time and thus cannot
be applied to existing monocular images.

Hoiem et al. [11] casted the outdoor scene reconstruc-
tion task as a multinomial classification problem. In their
work, pixels are classified as ground, sky, or vertical. By
“popping up” vertical regions they could build a simple 3D
model. However, many commonly found objects cannot be
classified into these three classes, e.g. buildings with angled
surfaces cannot be modeled as vertical.

Rather than inferring geometric cues from multiple im-
ages of the scene, Saxena et al. [15] used a supervised learn-
ing approach to directly infer absolute depth of the pixel in
the images. They simultaneously collected laser range data
and imagery of several scenes. Then a supervised learning
framework is applied to predict the depth map as a function
of the image using the laser range data as ground truth infor-
mation. Local features as well as global context are used in
their discriminatively trained Markov Random Field (MRF)
model [15]. To avoid the costly laser range scanning our
method does not rely on a database of known images and

their related depth. Moreover our method does not require
any prior depth estimates allowing us to use the vast number
of freely available labeled image datasets [14, 19].

Unlike other approaches which attempt to map from ap-
pearance features to depth directly [15], Liu et al. [12] first
perform a semantic segmentation of the scene. The seman-
tic information is then used to set the depth of the pixels
depending on their classes, for example sky pixels will be
far away. In contrast our method relies on the dark and
bright channel priors for determining the depth of the im-
age pixels. Hence our method significantly simplifies the
depth estimation problem.

Given an image of an object, Hassner and Basri [7] com-
bine the known depths of patches of similar objects to pro-
duce a plausible depth estimate. A database of objects rep-
resenting a single class (e.g. hands, human figures) contain-
ing example patches of feasible mappings from the appear-
ance to the depth of each objected is first established. Then
by optimizing a global target function representing the like-
lihood of the candidate depths, Hassner et al. could synthe-
size a depth estimate for the segmented object. In contrast,
our proposed method not only estimates the depth of a par-
ticular object in the scene but rather estimates the relative
depth and geometry of the entire scene.

Oswald et al. [13] proposed an algorithmic solution for
estimating a three-dimensional model of an object observed
in a single image. Based on user input, the algorithm inter-
actively determines the objects silhouette and subsequently
computes a silhouette-consistent 3D model, which is pre-
cisely the globally minimal surface with user-specified vol-
ume of the object of interest. Instead of modeling just a
single object from its segmented silhouette, we consider
the problem of estimating relative depth of the entire scene
from a single image.

Recently Gupta et al. [6] proposed to use simple phys-
ical scene constraints to obtain relative depth from single
images. Their method searches for feasible scene compo-
sitions based on the material properties implied by the ap-
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pearance of the scene elements. This leads to a physically
plausible scene layout based on a single image of the scene.
While our approach also recognizes scene parts by their ap-
pearance our depth is entirely driven by the dark channel
prior, which acts as a measurement of the scene depth.

Significant progress has been made to address the prob-
lem of single image haze removal recently. For images of
outdoor scenes there is a direct relationship between haze
density and relative depth of a pixel. The success of these
methods lies in using a stronger image prior such as variable
scene contrast (Tan et al. [17]) or the relationship between
surface albedo and transmission medium (Fattal [4]).

3. Method
In this section we present our method for predicting

depth from a single image. First, we outline the dark chan-
nel prior method in Section 3.1 and discuss its shortcom-
ings for depth estimation. Section 3.2 outlines our proposed
method for correcting the errors in the dark channel and
Section 3.4 further refines these results by leveraging, al-
ternatively, the geometric segmentation system in [10] and
the semantic segmentation system presented in [18].

3.1. Initial depth estimation by dark channel

We wish to predict the depth of the pixels in the scene
by leveraging the recent advances in single image haze re-
moval. A hazy image is typically modeled as [4, 8, 17]:

I(x) = J(x)t(x) +A(1− t(x)) (1)

where I(x) is the observed intensity of our input image,
J(x) is the scene radiance (i.e. haze free image), A is the
global atmospheric light, and t(x) is the medium transmis-
sion describing the portion of the light that is not scattered
by the atmosphere and reaches the camera. The goal for
haze removal is to estimate J(x) from I(x), but often t(x)
is also predicted. This can be exploited for depth estimation
given that under the assumption that the atmospheric light
is homogeneous the following holds:

t(x) = e−βd(x) (2)

where d(x) is the depth of the scene point at pixel x and β
denotes the atmospheric scattering coefficient. In this work
we leverage the dark channel prior of He et al. [8] to predict
the medium transmission. For a pixel x the dark channel
prior (Idark(x)) is defined as the darkest channel value over
a patch centered around x:

Idark(x) = min
c

(
min

y∈Ω(x)
Ic(y)

)
(3)

where c is the color channel (either red, green, or blue),
Ω(x) is the patch centered at pixel x, Ic is channel c of the

hazy image. Statistical observation shows that except for
the sky region, the intensity of the dark channel is low and
tends to be zero for haze-free outdoor images. To predict
transmission t(x), He et al. [8] invert the dark channel of
the normalized haze image Ic(y)/Ac:

t(x) = 1− w ∗min
c

(
min

y∈Ω(x)

Ic(y)

Ac

)
(4)

wherew is a constant used for tuning, andAc is the estimate
of the global atmospheric light for channel c. In our experi-
ments we set w = 0.95. A is constant for a given image and
is estimated as the RGB value of the pixel with the high-
est dark channel value. Since transmission within a patch
is not always constant, the transmission map generated by
Equation 4 contains block effects (see Figure 3(b)). Instead
of refining the coarse transmission by matting as proposed
in [8], we used a guided image filter [9] to achieve similar
results at lower computational cost. We leverage the gray-
scale image as the guidance, and our refined transmission
map captures sharp edge discontinuities, as shown in Fig-
ure 3(c). Then depth is estimated from the refined transmis-
sion map by d(x) = − log(t(x))/β.

The dark channel prior method [8] works by assuming
that the atmospheric light is of a neutral color and tries to
factor this neutral color out by measuring it from the dark
channel. Intuitively this works because in most haze free
patches there will be at least one pixel of the following
type to ensure a low minimum in at least one channel: 1)
shadow pixels, where all channels for a pixel are dark, 2)
bright color pixels, where 1 or 2 channels for a pixel are
dark, 3) dark object pixels, where all channels for a pixel
are dark. This fails when there is a patch entirely contain-
ing a bright object. See Figure 4 for examples. The white
wall in Figure 4(a) and white door in Figure 4(b) introduce
bias towards large depth estimates.

3.2. Identifying unreliable estimates

To identify the patches for which the dark channel prior
fails to provide a correct depth estimate our method has
to identify the potential candidate patches. The candidate
patches having neutral bright color can be of two major
classes: sky pixels or patches depicting a bright object. For
sky regions depicting partial cloud cover, the contrast be-
tween predominantly saturated clear sky and high intensity
(white) clouds introduces artificial depth variations. Con-
versely, image regions containing bright objects will tend to
yield artificially high values in the dark channel, indicating
a large distance to the camera, causing inconsistent depth
orderings that are driven by object/region texture instead of
scene haze properties. To overcome such ambiguities we
propose to flag these unreliable regions through the compu-
tation of a dual channel and the implementation of semanti-
cally driven reasoning. Next we will detail the computation
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(a) (b) (c) (d)

Figure 3. Example of single image haze removal via dark channel prior. (a) Input hazy image I(x). (b) Estimated coarse transmission map
t(x). (c) Refined transmission map after guided image filtering. (d) Final haze-free image J(x).

(a) (b)

(c) (d)
Figure 4. Dark channel prior usually gives wrong depth estimation
for bright objects. (a) Input image with white building. (b) Input
image with a white door. (c) Depth map for image (a). Depth of
the white wall is predicted farther than the building. (d) Depth of
the white door is different from the wall it belongs to.

and use of our dual channel prior.
We define the highest channel value within a local patch

as the “bright channel”:

Ibright(x) = max
c

(
max

y∈Ω(x)
Ic(y)

)
(5)

The concept of “dual channels” was introduced in Yeh
et al. [20] for image and video dehazing, where the authors
defined these two channels for each pixel to estimate the
global atmospheric light A in Equation 1. However, we
found that the difference between these two channels may
be leveraged to predict unreliable depth estimates.

To find areas where the dark channel prior assumption
was unreliable, we take the filtered difference between the
highest channel value and the lowest channel value to be
below some threshold:

unreliable(x) = F
(
Idark(x)− Ibright(x)

)
< α (6)

unreliable(x) is true if pixel x is flagged as unreliable. F
is the guided image filter [9]. For all our experiments we
empirically set α = 0.4. Figure 5 shows an example of this
mislabeled prediction. Note that the sky region gets flagged
as unreliable, the mitigation strategy for such regions will be
described in Section 3.4 where we leverage semantic labels.

3.3. Depth Correction using PatchMatch

For any region that is predicted to be unreliable we need
to provide an adjusted depth estimate. We pose this prob-
lem as an image completion task and search for matching
patches in the input image. We use the PatchMatch tech-
nique of Barnes et al. [1, 2] to do this efficiently.

For each unreliable depth pixel, we extract the image
patch centered around it, and search for visually similar
patches centered around reliable depth pixels. Patch sim-
ilarity is defined via Euclidean distance over pixel values.
We initialize each unreliable depth pixel with one reliable
pixel position, and transfer the depth accordingly. Then
our spatial propagation scheme enables us to find for each
pixel labeled as unreliable, an approximate nearest neighbor
patch believed to be correct (i.e. not flagged as unreliable).
The depth of the matching patch is assigned to the corre-
sponding unreliable pixel (See Figure 6). While such proce-
dure effectively corrects the initially erroneous depth order-
ing in local neighborhoods, relatively large image regions
devoid of reliable pixels (e.g. sky pixels) may be assigned
a depth estimate corresponding to arbitrarily distant pixels
belonging to separate scene elements. Accordingly, the re-
maining challenges to be addressed are 1) limiting the scope
of depth propagation and 2) enforcing geometric scene pri-
ors. We achieve both these goals through the incorporation
of semantic image segmentation.

3.4. Leveraging Semantic Segmentation

Semantic segmentation provides higher level pixel as-
sociations (i.e. labeled local pixel neighborhoods) that we
leverage in our depth propagation framework. We leverage
semantic association to determine the scope of our depth
propagation, enforce smoothness on our depth estimates
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(a) (b) (c) (d) (e)
Figure 5. Identifying unreliable estimates. (a) Input image. (b) Dark channel. (c) Bright channel. (d) Depth estimation based on dark
channel prior. (e) Unreliable pixels are shown as red. Sky patches and road pixels are predicted as unreliable.

(a) (b)
Figure 6. Depth correction using PatchMatch. (a) For unreliable
depth estimations, we search for similar patches in correct regions.
(b) Depth estimations are transferred accordingly.

within a given semantic region and assign geometric depth
priors based on semantic content. We consider the semantic
labels generated by approaches of Tighe & Lazebnik [18]
and Hoiem et al. [10], as shown in Figure 7. The com-
plementary nature of fine grain semantic based object seg-
mentation [18] vs. coarse geometric/structural grouping and
labeling [10] is aimed at highlighting the flexibility and gen-
erality of our approach.

Semantic parsing The use of the system presented in
[18] enables accurate fine grain depth boundary estimation
from the parsing output. In general, the framework is exten-
sible to include arbitrary number of user specified classes
allowing for class specific reasoning regarding scene con-
tent and geometry. In this work we leverage the distinction
between “stuff” (e.g. ground, sky, grass) and “things” (e.g.
cars, signs, bikes). To improve the matching performance,
we prefer that matches for patches come from image re-
gions of the same class. For example, if half of the pixels
assigned to the “road” label are marked as unreliable, then
we only match patches from the reliable road region, rather
than any part of the image that was deemed reliable. When
a sufficiently large percentage of any given semantic label
is flagged as mislabeled (more than 80%), we default back
to matching across all un-flagged pixels.

Geometric labeling By extracting the geometric layout
of the input image, we can refine depth estimation in a
coarse level. The system of [10] labels the geometric layout
of the input image into three categories: “horizontal”, “ver-
tical” and “sky”. Similarly, we find the approximate nearest
neighbor patch for each unreliable pixel within the same

geometric regions. Coarse level labeling such as [10] can
cause the depth map to loose boundaries and details after
PatchMatch based depth correction. To attain fine grained
boundaries, we further segment the image into superpix-
els using the efficient graph-based method of Felzenszwalb
and Huttenlocher [5]. Then we constrain the nearest neigh-
bor search within the same superpixel, and all candidate
patches come from reliable depth pixels. Figure 7 shows the
coarse (Figure 7(b)) to fine-grained (Figure 7(c)) segmenta-
tion used by our method. If a sufficiently large percentage
of any superpixel is flagged as unreliable (over 80%), we
loose such constraint to search from all un-flagged pixels.

To mitigate our problem with sky patches we force
any pixels determined to be sky by the leveraged labeling
[10, 18] to have the original depth predicted by the dark
channel prior. Finally, for rich semantic labeled images,
we enforce semantic priors between classes, such as “road”
or “ground” appears in front of objects it support such as
“car” or “building”. These relationships between “road”,
“ground” and “car”, “building”, are enforced by testing the
relative depth ordering against predefined input configura-
tions. If incorrect depth relationship occurs, we uniformly
decrease the depth value of the supporting regions until se-
mantic relationships are satisfied. This maintains the depth
gradients within the same semantic region, while correct-
ing for depth ordering errors between separate semantic re-
gions. In Figure 8, the side of the building is estimated to
be much farther back than the rest of the building; again we
correct this by flagging this regions as unreliable.

4. Experiments
For evaluation we compare three variations of our pro-

posed method against the Make3D system presented in [15]
as provided by the authors and our implementation of the
Dark Channel Prior method [8]. Our first variation is the
unconstrained PatchMatch propagation of correct depth es-
timates directly from the dark channel prior, we will call this
variation PatchMatch. Our second variation is the use of
constrained propagation using the coarse semantic labeling
provided by the approach described in Hoiem et al. [11], we
will refer to this variation as Geometric Labeling. Similarly,
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(a) (b) (c) (d)
Figure 7. Different segmentation inputs. (a) Input image. (b) Geometric labeling[11]. “Horizontal” is shown in green, “vertical” in red,
and “sky” in purple. (c) Superpixel segmentation[5]. (d) Semantic segmentation [18]. Main semantic categories are shown.

(a) (b) (c)
Figure 8. Leveraging semantic information. (a) Dark channel prior based depth estimation. (b) Semantically constrained correction through
PatchMatch propagation. Notice road and the supporting building appears at similar depth. (c) Depth after enforcing the semantic priors.

our third and final variation utilizes the fine grain labeling
provided by the system described in Tighe and Lazebnik
[18], we will deem this variation as Semantic Labeling .

We benchmark our method on the Make3D dataset
[15, 16], which has 134 test images with ground truth depth
maps collected by a laser scanner. In addition, we qualita-
tively test on the 500 image subset of the LM+SUN dataset
used in [18], leveraging the images and semantic segmenta-
tion results provided by the authors. In Figure 9, we show
examples where our system mitigates errors made by the
dark channel prior approach.

For images with colorful objects or objects with enough
texture to ensure the dark channel assumption holds, e.g.
Figure 9(a), the dark channel prior predicts the correct depth
and the only area our system flags as unreliable is the sky,
which is subsequently corrected. When the dark channel as-
sumptions are violated, our system successfully flags these
regions as shown in Figure 9(b-h). Figure 9 gives multi-
ple examples where our system enforces semantic order-
ing constraints to migrate errors originated from the use of
the dark channel prior. In Figure 9 (b, c, d, & e) the dark
channel prior estimates the road to be farther than the cars
(b), tree (c, e), or house (d). Our system corrects the depth
ordering by semantic order enforcement between road and
the supported structures, such as cars, trees and buildings.
Thus, we illustrate for a range of outdoor scenes, how we
are able to mitigate the bias in depth estimation caused by
the dark channel prior.

The results of our quantitative evaluation against ground
truth depth maps are presented in Table 1. On the Make3D
test set, we compare results using the relative error met-
ric and log 10 error metric, as done originally for Make3D

Table 1. Average error on Make3D dataset. PatchMatch results
are acquired based on semantic segmentations. Semantic Prior en-
forced semantic relationships based on PatchMatch results. Geo-
metric labeling applied PatchMatch based on geometric labelings.

Method Relative error log 10 error
Make3D[15, 16] 0.378524 0.522147
Dark channel prior[8] 0.271020 0.490922
PatchMatch[1] 0.261970 0.466927
Semantic Labeling[18] 0.239856 0.458029
Geometric Labeling[11] 0.253589 0.456868

[15, 16]. We compute relative error as e = |D∗−D|
D and

log 10 error as e = | logD∗ − logD|, where D is the
depth map. Since our method predicts the relative depth
of the image, we normalize the ground truth depth map
from the dataset. Average error on the test dataset can be
found in Table 1. On both error metrics, our method outper-
formed state-of-the-art methods (make3D system[15, 16],
dark channel prior[8]).

We also evaluated our method on indoor images as
shown in Figure 10. Given that indoors the image forma-
tion model of Equation 1 is hardly observable due to the
small viewing distances our methods performance degrades
significantly.

5. Conclusion
In this paper, we have proposed a simple but effective

method based on the dark channel prior to estimate rela-
tive depth from single monocular images. Compared with
previous works, we summarize our contributions as: 1) We
proposed an effective method to predict error-prone areas
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Original Image Depth from Dark
Channel Prior [8]

Depth from
Make3D [15]

Depth using Geo-
metric Labels [11]

Depth using Se-
mantic Labels [18]

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)
Figure 9. Comparative results with dark channel prior [8], Make3D [16]. The two rightmost columns depict our estimated relative depth
maps using the labelings from [11], [18]. (Best view in color)
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Input image Original depth Corrected depth
Figure 10. Our method doesn’t work well on indoor scenes.

of the depth estimation by comparing the bright and dark
channel priors. 2) We proposed an approach to leverage se-
mantic information to refine the depth estimations.

The proposed framework explored the use of a dual mea-
sure to model the suitability of local dark channel prior mea-
surements in the context of depth estimation. We exploited
this dual prior within a constrained propagation mechanism
to correct likely errors in depth estimation framework pro-
posed by He et al. [8]. The constraints on our propaga-
tion/correction scheme are provided by semantic labeling
attained through state of the art parsing techniques. Ac-
cordingly, our framework combines novel prior based depth
estimations with semantic reasoning within the context of
single view depth estimation.

Our approach is non-parametric, making no assumptions
about the underlying model between visual appearance and
depth, which is fundamentally different with previous ap-
proaches [3, 11, 12, 15, 21]. This makes our algorithm
applicable to a wide range of scenes, including highways,
coasts, buildings, and forests, as shown in Figure 9. Fi-
nally, unlike traditional learning based methods, our ap-
proach doesn’t require ground truth depth data for training
purposes. This makes our methods more applicable to exist-
ing images where no ground truth depth data is available.
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