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Abstract

As classifications datasets progressively get larger in terms of label space and
number of examples, annotating them with all labels becomes non-trivial and
expensive task. For example, annotating the entire Openlmage test set [32] can
cost $6.5M. Hence, in current large-scale benchmarks such as Openlmages [32]
and LVIS [16], less than 1% of the labels are annotated across all images. Standard
classification models are trained in a manner where these un-annotated labels are
ignored. Ignoring these un-annotated labels result in loss of supervisory signal
which reduces the performance of the classification models. Instead, in this paper,
we exploit relationships among images and labels to derive more supervisory signal
from the un-annotated labels. We study the effectiveness of our approach across
several multi-label computer vision benchmarks, such as CIFAR100 [31], MS-
COCO panoptic segmentation [27], Openlmage [32] and LVIS [16] datasets. Our
approach can outperform baselines by a margin of 2-10% across all the datasets on
mean average precision (mAP) and mean F1 metrics.

1 Introduction

In the past decade, deep networks have shown promising results on a wide variety of applications
and tasks, such as image classification [19, 30, 52], image segmentation [17, 18, 40, 43, 50], object
detection [9, 14, 18, 49] and vision language tasks, e.g. image captioning [26, 60, 65], visual question
answering [1, 2, 15, 37, 51], etc. As the number of applications increase, the number of visual
concepts that are needed to be recognized have also increased. The models need to reason across
a wide breadth as well as depth of visual concepts. In Fig. 1, we can see the diversity and fine-
graininess of the label categories that can be defined across the images of a dataset. Annotating
such large-scale benchmarks is an arduous task [12, 29] since this process needs verification of all
possible labels across all images. It is expensive and practically infeasible. For example, using the
Amazon Mechanical Turk service to verify all 9.6K labels of the entire Openlmage test set [32] of
116K images (not a particularly large number of images for computer vision tasks) would cost $6.5M.
For specialized domains such as chest radiographs, annotations are ambiguous and must come from
high-skilled annotators (aka, doctors in this case) [22, 24].

To overcome this challenge, large scale datasets such as Openlmages [32] and LVIS [16] have adopted
the concept of federated datasets [38], where a single dataset is formed by the union of a large number
of smaller constituent datasets for a single category. For each category, c, there exists two disjoint
subsets of the entire dataset, P, and V., which contain the positive and negative images associated
with the class label, c respectively. For Openlmages and LVIS, the sum of positive and negative
images per category (on average) is 2-3 orders of magnitude less than the total number of images.
Such a process can not only reduce the annotation cost, but also speed up the effort of adding new
labels to the dataset. This strategy has been used to fast track annotation of COVID-19 cases [10]
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Figure 1: Examples of images from Openlmages v6 dataset

alongside existing X-ray imaging datasets such as [24, 62]. In Fig. 1, we show some examples of
images and their corresponding positive and negative labels from the OpenImages [32] dataset. It
can been seen that similar images can have a large variation in the labels that are annotated. For
example, human head is present as a positive label in Fig. 1 (a), but not in (b) or (c). While this
design principle of enables the computer vision industry and the research community to construct
and evaluate on large-scale benchmarks efficiently, it also forces the community to reconsider how
to train deep networks on such datasets. Traditional methods to train the classification models on
partially annotated datasets simply ignore the un-annotated labels during training but that leaves
valuable training signal unused.

In this paper, we explore relationships among the images and labels to derive supervisory signal from
the un-annotated label categories. For example, in both Fig. 1 (b) and (c), there is a person with a
tennis racket. If the visual representations of these images are close by, we can use the annotations
from each other. Thus the person label in Fig. 1 (c) can be considered as a positive label for the
image in Fig. 1 (b). We can also exploit label relationships in a similar fashion. In Fig. 1 (¢), we
have person as a positive label, but not human arm or human head. If the representation of human
arm and human head is close to that of the person, we can consider them as positive labels as
well. Such relationships have been explored in the domain adapation [33] and few shot learning
literature [48, 59], where such relationships have been reasoned across multiple datasets, but here we
reason about these relationships within the same dataset.

Recently, [13] introduced the problem of training deep neural networks on partially annotated datasets.
It works by first training a classification network while ignoring the un-annotated labels. Then, it uses
a graph convolutional network to bootstrap on the un-annotated labels and hence expand the annotated
labels. In this paper, we introduce a simple, yet effective baseline, where all un-annotated labels
are considered as negative. Similar approaches have been attempted for noisy label classification,
where the number of un-annotated labels or incorrect labels are significantly less compared to the
partial label scenario. While this may not be intuitive for the partial labeling scenario, we observe
that this baseline with a simple class-weighting scheme can sometimes out-perform or perform
similar to the training approaches where the un-annotated labels are ignored [13, 21]. We hypothesize
that this might be because the number of positive labels are orders of magnitude smaller than the
negative labels [35, 32, 16]. Hence, this noisy, negative supervisory signal results in learning better
representations compared to the scenario where we use a clean, but significantly less supervision
signal. While this baseline improves classifier performance by exposing the model to significantly
more data, the assumption that all un-annotated labels are negative is clearly incorrect. This form of
noise cannot be modeled trivially since it depends on complex factors involving annotation budget
and ad hoc choices involved during the annotation process. To overcome this deficiency, we exploit
image and label relationships to soften the noise from our new baseline. Instead of ignoring the
un-annotated labels or assigning them as strict negative labels, we use image and label relationships
to consider the un-annotated labels in a “soft” manner. We model this softness using knowledge
distillation [20]. We evaluate the performance of our multi-label classification models on challenging
datasets such as CIFAR100 [31], MS COCO detection [35], MS COCO panoptic segmentation [27],



Openlmage [32] and LVIS [16]. Our code will be made open source upon acceptance. In summary
our contributions are:

e We introduce a simple baseline that outperforms previous methods on the task of training
from partially labeled datasets.

e We present a novel method based on image and label relationships to soften the strict
negative supervisory signal imposed by our baseline.

e We show the effectiveness of both our baseline and novel approach on 5 challenging,
large-scale vision datasets.

e We release all code to reproduce the results presented in this paper.

2 Related Work

Partial labels as noisy labels. There is a lot of approaches in the literature which deal with the
un-annotated labels as noise. Noise can be considered as a statistical outlier which can be modeled to
reason about the true probability distribution of the data [8, 36, 39, 41, 53, 57, 58, 64]. There have
been different approaches which have the noise function either as a prior [41, 45, 47] or as a function
of the label space [53] or the input space [36, 39, 58] or both [8, 57]. These approaches reduce the
influence of noise in the data and enable the models to train with the true underlying probability
distribution of the data. However, in the case of partial labels, our hypothesis is that modeling of the
phenomena which chooses which subset of labels are to be annotated for each image is complex and
non-trivial.

Another common approach to deal with the noisy annotations is to bootstrap [7, 45, 47, 67] the
labels in an iterative fashion. Bootstrapping on image classification tasks can be done based on either
classification scores [23, 47] or clustering based objectives [7, 67]. The former set of approaches
uses the top-scoring positives and negatives (from the previous rounds of training) to expand or clean
up the label annotations during training the subsequent training rounds. The latter set of approaches
determine pseudo-labels with the clustering objective and use them to train a classification model
with a cross-entropy loss function. Our approach is significantly different from this line of work.
Treating un-annotated labels as noisy negative labels or statistical outliers indicate that the noise is
considerably less than the training signal. However, in the case of partial labels, such assumptions
cannot be made. Moreover, bootstrapping is an iterative approach in which label expansion occurs.
While, ours is a single round of training which incorporates information from the un-annotated labels
in a soft manner. Training in an iterative fashion can potentially help our performance further, but
that’s beyond the scope of this paper.

Positive Unlabeled (PU). A special case of partial label annotations the case of positive unlabeled
or missing label problem [4, 28, 42, 69]. In this case, the samples are annotated with a set of positive
labels, and the remaining un-annotated labels are either positive or negative. There is no explicit
representation of annotated negative set. In our approach, we consider the more general and realistic
setting, where both the annotated and the un-annotated labels have both positive and negative classes.
In these approaches, it is common to either use the un-annotated labels as ignore or strict negatives.

Partial labels. Approaches such as [5, 25, 56, 63, 66, 68, 70] have proposed different optimization
strategies to deal with the partial labeling dataset. However, such approaches are not scalable to
large scale datasets. Moreover, end-to-end training of a deep network along with these optimization
strategies is not trivial. Approaches have mostly focused on using the un-annotated classes as ignore
classes [13]. Biomedical classification approaches [3, 22] have considered the possibility of using the
un-annotated labels as positive or negative. However, this has not been used to baseline computer
vision benchmarks.

[13] proposes an iterative algorithm which uses a graph convolutional network to expand the label
space and “annotate” the un-annotated labels. In this work, we aim to improve single iteration of
training. We can use similar approaches to iteratively improve the performance. Moreover, the results
demonstrated in their work do not bridge the gap to the oracle approaches as much as our single
round of training. [46] suggests an approach where they explicitly make the assumption about how
the individual datasets have clean and complete annotations, but it is not complete across the datasets.
Theirs is a special case of our approach. Our approach can handle completeness and incompleteness



in each individual dataset as well as across multiple datasets. We show results across all these settings
in our experimental section.

Soft Labeling. There have been several notable works [54, 55, 71] in the literature which treat the
classes as soft labels and exploit the label relationships to enable better visual representation for each
visual class category. Recent approaches [44] have used teacher-student networks to determine a
target distribution of classes, which is a softer version compared to the usual one-hot encoding of
image classification training settings. The approach adopted by [34] is similar to the approach we
have adopted here. However, they have adopted a constant temperature term for label smoothing
while adopting a softer version of the target distribution from a network trained on clean dataset.
However, in our case, we don’t have access to a “clean”, fully annotated dataset.

3 Approach

Given an input image, x; and a set of visual categories, C (|C|= C), we are interested in finding
the visual concepts among C that are present in this image. The GT annotations provided for this
image, are a set of positive labels, P (x;) C C and a set of negative labels, N (x;) C C, where,
P (x;) NN (x;) = 0 and typically | P (x;) UN (x;) |<| C |. Let 6 denote the parameters in the
deep network, f (.;6), which takes as input an image and outputs a C-dimensional output € R. The
prediction output of the network, y; ., for category, c, for an input, x;, is given by y; . = o (f. (x:;6))
where o (a) = 1/[1 4+ exp(—a)]. N is the number of training examples, and since we consider the
training examples to be i.i.d, we take the overall loss function to be averaged across all training
examples in a batch. For the purpose of brevity, we ignore the notation, ¢ to denote the training
example from hereon.

We define different settings in which the BCE loss function can be applied in the partial labeling
multi-label image classification problem.

No exposure (NE): In this setting, we train only on the labels that have been annotated for the input
image, x. Thus the GT labels are not “exposed” to the un-annotated labels. The loss function for this
setting is as follows:

Lyce(x,y) == Y logo(yer)— > logo(—y.) (1)

cteP(x) cmEN(x)

Weighted no exposure (wNE): Following [13], we also consider a weighted no exposure (WNE)
setting, where the loss term of each sample is weighted by a factor which is a function of the number
of annotated labels corresponding to that input image.

Full exposure (FE): In this setting, we “expose” the set of all labels, not just the labels that have
been annotated, during training for the input image.. Unless mentioned, we treat the GT value of the
un-annotated labels as negative. While this may seem counter intuitive, in the majority of cases this
will be the correct label as the number of negative labels outnumber the number of positive labels
by orders of magnitude. However, in some cases [22], assigning them have positive as given better
performance. If we represent the set of un-annotated labels as U (x) = C — (P (x) UN (x)), the
loss function can be written as follows:

Lice(xy)=— > logo(yer)— > logo(—y)— Y logo(—ye) (2
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Using this loss function out of the box does not usually perform well. But assigning a higher weight
for the positive classes enables this simple strategy to outperform previously proposed method of [13]
(wNE). But it can suffer especially for rare classes where labeling a few positives as negatives can
completely overwhelm the labeled positives.

Soft exposure (SE): Both no exposure and full exposure methods are simple but have vital flaws.
The full exposure negative setting can overwhelm the network while the no exposure setting will
miss out on a large number of negative classes, which are not seen during training. These two issues
are complementary to each other. Hence we propose a soft exposure loss function, where instead of
treating the labels as hard negatives as done in the FE setting, we use label smoothing to reduce its
training signal while not completely ignoring it as in the NE setting does. Hence, the loss function in



this setting is as follows:
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where, o (a,T) = 1/[1 + exp(—a/T)]. The idea of temperature Figure 2: Sigmoid values for dif-
is to not consider the un-annotated negative labels as hard nega- ferent temperature settines

tives, but as soft labels (positive/negative). The BCE loss function 2
forces the predictions to be more confident to get a lower loss
value. Lowering the temperature value, converts the prediction .
value to be more confident and hence have a lesser loss value
without changing the actual prediction from the model. This can  *

be useful for the un-annotated labels, which gets a softer loss value - I o — s
compared to the hard labels in the full exposure model. At the “ % — e
same time, it provides negative information which is not provided ™ 7 T T ° * * © ¥
in the no exposure model.

Each un-annotated labels is assigned a unique temperature values based on how confident we are
in its hard label. We use the distance between an un-annotated label and the annotated labels to
model these temperature values. The closer the un-annotated labels are to the annotated labels, more
confident are we with the positive or negative class assigned to the un-annotated label. To measure
the close-ness between an un-annotated label and the annotated labels, we use two types of similarity
functions: one based on label relationships, (dz,) and one base on image relationships, (d;).

Let the distance between the two label categories, ¢1, ¢, be denoted by d (c1,c2), where d can
be Euclidean or cosine distance functions. The feature vector associated with the label category,
¢ (denoted by 1 (c)) represents the median of all image representations, where c is present. The
distance between an un-annotated label, ¢* and the positive annotated labels, P (x), is computed as
follows:
df (¢*,x)= min d(c,¢; 4

L( ) ) ciGP(x) ( ) 1) ( )
Similarly, we can compute the distance, d} (c*,x), between an un-annotated label, ¢* and the
negative annotated labels, N (x).

For image-relationships, we consider the positive and negative labels of the images which are nearest
neighbors of the current image. Let, N Ny, (x) represent the k—nearest neighbors of the input sample,
x. For each un-annotated label, ¢* € U (z), we consider all the i 1mages in NNy (x) where, ¢* is
annotated as positive as, PL (c%,x) = {x; | x € NN, (x)Nc* € P( er} Slmllarly, we can
define, all the images in N N}, (x) where, ¢* is annotated as negatlve as, N ( ={x; | x €
NN (x) N c* € N (x;)}. We can define, the distance of an un-annotated label G 1n w.r.t. a hard
positive label, as follows:

L P! (e %) = &
dy (c¢",x) = min  d(x,x;), otherwise ®)
x; €PI(cv,x)
Similarly, we can define the distance of ¢ w.r.t. a hard negative label (d; (c*)). We can combine the
df (c*,x),d} (c*),d; (c*,x),d} (c*, x), as follows:

d* (c*,x) =min (df (c*,x),d] (c*,x)) (6)
d~ (¢*,x) = min (dz (c*,x),d; (C“,x)) @)

Finally, the temperature is set as follows:

u oy Jexp[B(L—d" (¢, x)]+v,  dT (" x) <d” (", x)
(et %) = {—exp [B(1—d (c*,x))] +7, otherwise ®

Since distance values are non-negative and can be arbitrarily large, we found that normalizing the
distance values significantly helps in the performance. Each of d* (c%, x),d™ (c%,x) is normalized
by the maximum value of d*, d~ among all un-annotated labels for the sample, x. In our experiments,
we use, k = 10, 5 = 5.0 and v = 0. For computing the distance between labels and finding the
nearest image neighbors, we use representations from a pre-trained Imagenet network.
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4 Results

We analyze the performance of our approach and the baselines on challenging multi-label datasets
from the computer vision literature. To evaluate the approaches on these benchmarks, we use mean
AP and mean F1 (averaged across classes) metrics. For the F1 score, the class-based score thresholds
are set based on the best F1 score on the validation set.

4.1 Synthetically generated partially annotated datasets

To understand how our model performs on the partially annotated datasets, we use (almost) fully
annotated datasets to compare proposed models against oracle models at different fractions of partial
label annotations. We use CIFAR100 [31], MS COCO detection [35] and MS COCO panoptic
segmentation [27] datasets for the synthetically generated partially annotated datasets. For generating
the synthetic partially annotated datasets, we follow two strategies, (a) random removal of labels from
the fully annotated datasets as done in [13], and (b) knowledge graph based partially annotated dataset
generation. In short, our knowledge graph strategy takes inspiration from the way many datasets
such as [11, 35], are labeled based on a hierarchy of visual concepts. Here, during the verification of
labels in an image, the process starts with verifying visual concepts that are present in the first level
of the hierarchy. If a visual concept is present in the image, then the verification of lower levels of
hierarchy is done to explore more fine-grained visual concepts. For our knowledge graph strategy we
use a similar process to generate partial label annotations. Instead of fully annotating an image all the
way down to leaf nodes, we randomly choose a node in the knowledge graph. All labels from the
root until that node are considered as verified positive annotations. The sub-tree below the node is
considered as un-annotated labels.

4.1.1 Randomly generated partially annotated datasets

We use the MS-COCO 2017 detection benchmark [35] for this purpose. It has 80 categories among
118K training images 5K test images. We randomly split the original training set into 116K and 2K
validation images, s.¢. the training and validation sets have same label distribution.

Synthetic partial dataset creation. MS COCO detection dataset is known to have ~ 85% re-
call in the positive label annotations [35]. But for purposes of the experiments in this section,
we consider them to be fully annotated. We create subsets of MS COCO detection dataset with
5%, 10%, 30%, 50%, 70%, 90% of the positive labels in the dataset. 100% labels indicate the original
annotations of the dataset. In this dataset, there are ~7 positive labels per image. The remaining
~73 labels are considered negative. To have similar number of positive and negative labels as the
realistic datasets, we choose the negative labels randomly s.¢. #negative annotations is 1 — 1.5X
#positive labels. This approach mirrors the actual partially annotated datasets and is different from
the positive-unlabeled scenario in [13], where all negative annotations have been considered. For
each fraction of partially annotated datasets, we create 5 separate subsets with different random seeds.
The results are averaged across all 5 subsets in this section.

Experimental details. We followed the same network (ResNeXt101 pretrained on ImageNet) and
optimization strategies as used in [61]. The networks have been trained using the sgd optimizer with
an initial learning rate of 0.001, momentum of 0.9 and weight decay of 0.0005. The learning rate is
decreased by a factor of 10 at the end of 10" and 20™ epochs. We use a batch size of 24 with the
input image dimension as 224 x 224. The networks are trained for 36 epochs. During testing we
choose the model which has the highest mAP score on the validation dataset.

Results. The results of the different training settings: NO EXPOSURE (NE), WEIGHTED NO EX-
POSURE (WNE) [13], FULL EXPOSURE (FE) and SOFT EXPOSURE (SE) are shown in Fig. 3 (a).
We observe that WNE performs slightly better than the NE setting due to better stability in the
optimization function. The FE model performs slightly better than WNE, which shows that the lack
of negative annotations can impact performance. Because in these computer vision benchmarks
naturally have far more negatives, labeling all un-labeled annotations as negative annotations (FE) is
not a bad baseline since it is true most of the time. The false positive in the GT can be considered as
noise, and its impact is significantly more when the dataset moves into the 10% partially annotated
regime. Moreover, the noise in the FE model is alleviated by adding more weight to the positive
classes. In our experiments, we use a constant multiplicative weight of 5.0 for positive classes and
1.0 for the negative classes.

In Fig. 3 (b), we show an ablation study of the temperature modeling to capture softness in the hard
targets. The LABEL SMOOTHING (LS) model captures the softness when all un-annotated labels
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Figure 3: Test AP vs fraction of partially annotated dataset (MS COCO detection dataset).

have a constant temperature value and is not dependent on any label or image relationships. The
SE-L and SE-I model captures only the label and image relationships respectively to determine
the degree of softness of the un-annotated labels. The SE-I model by itself does not perform that
well, because the labels from the nearby images do not cover all the un-annotated labels and hence
performs close to the NE and WNE models. But combined with the SE-L model, it can improve
the overall performance since the confidence of un-annotated labels become higher (and hence the
temperature becomes higher).

4.1.2 Knowledge-graph based partially annotated dataset generation

For this purpose we use the MS COCO panoptic segmentation [27] as they have more label categories
and enable us to analyze this section better. It includes 80 thing categories and 53 stuff categories.
We use the knowledge graph defined in [6] and merge it with the WordNet. This results in a total
of 163 label cateogories. We do not create different fractions of partial label annotations as in the
previous section. At lower fractions, the leaf labels would be missing completely and the visual
categories belonging only in the upper levels of the knowledge graph would be present. That would
prevent us from analyzing the performance across all labels in the dataset across all fractions of labels.
Instead, we simply create 5 different datasets based on different random seeds and show results
averaged among them. The knowledge graph and the details of the dataset creation is described in the
supplementary paper.

Experimental details. We use the same training details as done for the MS COCO detection
benchmark, mentioned in Sec. 4.1.1.

Results. The overall results are shown in Tab. 1. The performance of the SE based models are
significantly better than the baselines. The oracle model has access to all annotations. There are two
reasons which contribute to why the performance of the SE based models are better than the oracle
model. Firstly, label smoothing tends to improve the performance of the labels. Secondly, since MS
COCO panoptic segmentation dataset is known to have missing labels, using the image and label
relationships can improve the performance of classification models over the oracle model.

We plot the convergence of the validation AP metric vs epochs is shown in Fig. 4. SOFT EXPOSURE
(SE) model converges faster compared to the baselines due to additional supervisory signal from the
un-annotated labels. We use one of the random dataset to plot the labelwise performance in Fig. 5
and analyze them in terms of the fraction of labels annotated in the dataset. On the y-axis, we plot the
label-wise difference of the AP metric of SE model w.r.t. the best performing baseline (WNE) model.
Positive values indicate the labels where the SE model performs better than the WNE model. The
labels are sorted from the worst to the best performing ones. The brighter bars indicate higher fraction
of labels being annotated, while the darker bars indicate labels where most of them are un-annotated.
We observe that most of the darker bars are closer to the right part of the figure and the brighter bars
are closer to the left part of the figure. This indicates that our approach does better for labels which
higher fraction of labels are un-annotated.

4.2 Real partially annotated datasets

For studying the performance on realistic partially annotated datasets, we use Openlmage [32] and
LVIS [16] datasets. Please refer to the supplementary material for the results on the LVIS dataset. In
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LS 0.6418 | 0.6281 || 0.6347 | 0.5877 | 8 0.47 § === Full
SE-I(Ours) || 0.6487 | 0.6331 || 0.6371 | 0.5815 | & é 7" SE(Ours)
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SE (Ours) || 0.6578 | 0.6403 || 0.6491 | 0.6048 Epochs

Table 1: MS COCO PS results. Bold: best performing Figure 4: Faster covergence of SE: Val-
and Underlined: 2nd best. idation mAP vs epochs

Figure 5: MS COCO Label-wise Performance (Sorted by the AP score). Increasing color brightness
of the bars indicate increasing fraction of missing annotations. Best viewed in color

this paper, we use the detection dataset of Openlmagev5 and convert it into a multi-label classification
benchmark. It has 1.6M training, 33K validation and 113K test images with 497 label categories.

Experimental Details. We choose the ResNet-101 architecture, pre-trained on ImageNet dataset.
As in pre-trained ImageNet dataset, we resize the image to 224 x 224 as input to the network. We
used a batch size of 96 per GPU and random vertical and hortizontal flips for data augmentation. An
initial learning rate for all layers except the last was set at 2x 10~%. The initial learning rate for the
last layer was set at 2x 10>, We used the Adam optimizer with learning rate decay of 0.3 at the end
of 8th and 15th epochs. The model was trained for 30 epochs. All the models have been trained with
these hyper-parameter settings.

Results. We report the performance of the models on the test set of Openlmages detection benchmark
in Tab. 2. Since the all the labels for the test images are not annotated, we only evaluate the
performance of our model on the set of annotated labels. Hence false positive can happen only
if a positively annotated label is predicted as a negative class. Similarly, false negative can
happen only if a negatively annotated label is predicted as a positive class. We observe that our
approach performs significantly better compared to the baseline models by a margin of ~3%.

5 Conclusion

In this paper, we look at the how we can use modern day datasets which are annotated with partial
labels for the task of multi-label image classification. We argue that instead of looking at partial
labeling datasets as noisy labeled dataset, we should adopt our training strategy in a manner which
can use the un-annotated labels to the benefit of training. In that direction, we exploit image and
label relationships to get more supervisory signal from the un-annotated labels. We hope this can
be fuel interests in the community to further explore the partial label problem for a wide range of
applications and tasks.

Training Strategy || NE | wNE [13] | FE LS | SE-I (Ours) | SE-L (Ours) | SE (Ours)

mAP 75.61 | 77.18 |76.89|79.32 77.56 80.17 80.67

Table 2: Openlmage results
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6 Broader Impact

We investigate the issue of training classification models in partially annotated datasets. Partially
annotated datasets can enable democratization of Al and allow small and large organizations to
construct and train models with the requirement of large data sources. The partially annotated
datasets are realistic in nature. We hope that in-depth studying of this problem can start more formal
discussions into fairness issues concerning large-scale datasets.

7 Funding Sources
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9 Highlights of the Rebuttal based on Reviewer Feedback

PRIOR WORK. The state of the art approach for the partially annotated multi-label classification
task is [13]. There are two contributions of [13]. One of them is the nWE baseline, which our
approach outperforms. The other contribution is using GNN. But it barely has any improvement. In
our settings we do see a similar trend of achieving < 0.2% improvement in mAP. From a high level,
instead of modeling label relations directly from the data, we use priors in terms of distance of class
embeddings. Moreover, we exploit image similarities as well in this approach.

SENSITIVITY TO HYPER-PARAMETERS. We selected the values of 5 = 5 and v = 0 based
on the validation set. The mAP is within 1% of the reported performance (on average) for y € (0, 0.1].
The drop in performance can be as large as 5% with v € (0, 1]. For, 8 € {1,2, 5,10, 20, 50,100},
avg. mAP on the validation set was within 2% of the best performance at 5 = 5. For values of
5 < k < 30, the SEI performance increases by 5%, but it’s improvement on the SE model is < 0.15%.
k < 5, reduces the performance of SEI and SE models and brings them closer to NE and SEL models
respectively.

DESIGN CHOICES OF SE MODELING. The main motivation of the paper is to use image-image
and label-label relationships to capture more supervisory signal from the unsupervised un-annotated
labels. We implemented this via temperature modeling. Exploring better modeling choices is a work
in progress. Thank you for suggesting the entropy based modeling. Regarding the “hard” minimum
operations, we also experimented with “softer” operations in this rebuttal. Instead of taking the
minimum, we take the median operation in Eq. (4) and Eq. (5) among the top 5 neighbors. We see an
improvement of ~ 0.7% for label-label relationships using this approach. While both label and image
based relationships improve the performance, we do observe that the label based distances dominate
the image based. This is because the number of labels considered for the image based distances is
significantly lesser than the label based distances. While additional 72.7 labels are considered for the
label based, the number of labels being considered for image based is ~ 5.5 @10% partially annotated
data. We will perform an in-depth analysis of the effect of this discrepancy on our approach.

DISTANCE COMPUTATION COST. It takes <1 epoch training time ( ~ 15 min. on a single
V100 GPU) and it’s done once.

FEATURE PRE-PROCESSING FOR DISTANCE COMPUTATIONS. We process the features
in the same way as [67], where we use the 2048-dim feature vector and do L2 normalization on them.
For k-NN, we use these features to compute the neighbors. For 1 (¢), we take a median of these
representations across all images where, ¢ occurs. We had also experimented with mean, but found
median to have better performance.

dr, DISTANCES WHEN P(z), N(z) = ¢. Implementation-wise, we ignore such labels when this
happens. However, when combined with dI , the overall distance value defaults to 1 based on Eq. (5).
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