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Abstract. This paper presents a new large scale multi-person tracking
dataset. Our dataset is over an order of magnitude larger than currently
available high quality multi-object tracking datasets such as MOT17,
HiEve, and MOT20 datasets. The lack of large scale training and test
data for this task has limited the community’s ability to understand the
performance of their tracking systems on a wide range of scenarios and
conditions such as variations in person density, actions being performed,
weather, and time of day. Our dataset was specifically sourced to pro-
vide a wide variety of these conditions and our annotations include rich
meta-data such that the performance of a tracker can be evaluated along
these different dimensions. The lack of training data has also limited the
ability to perform end-to-end training of tracking systems. As such, the
highest performing tracking systems all rely on strong detectors trained
on external image datasets. We hope that the release of this dataset
will enable new lines of research that take advantage of large scale video
based training data.
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1 Introduction

Large-scale datasets are the fuel that has driven the success of learning-based
methods over the past decade. The introduction of large datasets, such as Im-
ageNet[21], MSCOCO[34], LSUN[63] and Kinetics[11], has enabled the devel-
opment of deep learning-based models which have rapidly advanced the field of
computer vision. Unfortunately, no such large scale dataset has been collected for
multi-object tracking to date. The multi-object tracking task [8, 57, 66, 50, 65, 41]
requires detection and ID assignment of all objects for each frame in a video. In
practice many current datasets have people as the only objects (multi-person),
which will also be our focus. The most popular datasets used today, MOT17 [39]
and MOT20 [20], have just 14 and 8 videos respectively, greatly limiting the
ability of researchers to develop data hungry models that require large tracking
datasets as well as limiting the measure of generalizability of tracking methods
given the small number of videos used for testing. In this work we present a
new multi-person tracking dataset that is an order of magnitude larger than
MOT17 [39] and MOT20 [20], while maintaining the high quality bar of anno-
tation present in those datasets.
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One reason for the lack of large scale multi-object tracking datasets is the
significant cost to collecting such a dataset. The collection and annotation of
these datasets is non-trivial as both the curation (sourcing) and labeling require
significantly higher manual human labor than classification or detection based
datasets. For person tracking, sourcing video is particularly challenging because
though there is a large volume of video content available on the internet, it is
mostly content that does not align with our target video domain or the con-
tent rights are restricted such that the videos cannot be easily included in an
academic dataset. The Kinetics[11] dataset, for example, attempted to remove
this challenge by only providing links to YouTube videos but over time those
videos were removed, leaving researchers with incomplete train and test sets and
making it difficult to reliably compare to other works.

In this work we collect videos from sources where we are given the rights
to redistribute the content and participants have given explicit consent, such
as the MEVA[17] dataset. Our dataset consists of 236 videos captured mostly
from static-mounted cameras. Approximately 80% of these videos are carefully
sourced from scratch from stock footage websites and 20% are collected from
existing datasets such as PathTrack[37] or MEVA[17]. While building the dataset
we place special importance on sourcing indoor and outdoor videos with different
lightning conditions, diverse camera angles (from birds-eye view to low-angle
view), varying weather conditions (sunny, raining, cloudy, night), various levels
of occlusion and different crowd densities. Section 3 presents a detailed analysis
of these factors.

In addition to sourcing, collecting high quality annotations is especially chal-
lenging for multi-object tracking datasets. This is largely due to the complexity
of the task. Classification datasets [21, 11] only require one or more labels to be
tagged per entire image or video whereas detection datasets [34, 24] increase the
complexity by not only requiring a list of objects, but also the object’s location
specified by a bounding box. Multi-object tracking extends the idea of object de-
tection even further by also requiring a unique object identifier for every labeled
bounding box throughout a video recording. This annotation task is especially
challenging in crowded scenes where even a human annotator could easily lose
or confuse an object with another if they get partly or fully occluded.

In this work we adopt a two stage annotation pipeline that leverages AWS
SageMaker GroundTruth (an iteration of Amazon MTurk). When annotating
videos for tracking, many edge cases emerge and must be handled consistently to
have a meaningful measure of an algorithm’s quality. In our annotation process,
we have thoroughly considered edge cases such as people with high occlusion
or person reflections and defined strict protocols for dealing with each edge
case. For example, we annotate reflections of people but tag such annotations
specifically so they can be properly handled during training and evaluation.
After carefully defining our annotation criteria, we use our trained workforce to
annotate all videos from scratch. More details regarding our annotation protocol
can be found in Section 4.
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We demonstrate the benefit our large-scale dataset adds to the community
by (1) comparing key statistics with existing MOT benchmarks (Section 5) and
(2) training and evaluating state-of-the-art multi-object tracking models on our
dataset (Section 6). The latter shows that our benchmark contains many chal-
lenging scenarios where current state-of-the-art models fail to perform well. We
hope that the publication of our dataset will drive the tracking community to-
wards developing more robust models that can generalize to a wide variety of
smart home/city scenarios.

2 Related Work

Multi-Object Tracking Datasets. MOT is an essential part of important ap-
plications such as autonomous driving [23, 43, 45], smart city [18, 38, 12, 13]
and activity recognition [58, 5]. Especially the field of autonomous driving has
grown significantly, which is also reflected in the number of large-scale bench-
marks published for this scenario [27, 16, 31, 52, 9, 14, 22, 62]. Some of these
datasets have also been used to train and/or evaluate person tracking models
[42, 50]. The challenges such benchmarks entail are fast camera motions and
quick position changes of pedestrians. However, the amount of occlusions and
crowdness is rather limited and thus not sufficient enough to train robust track-
ing models that can operate in high-occlusion scenarios. In contrast, synthetic
datasets that have been specifically created for pedestrian detection/tracking in
urban scenarios [25, 26] contain scenes with varying person densities and can
therefore be very valuable for person tracking. The clear advantage is that they
do not require any manual annotations. Although the quality of synthetic data
improves steadily, the usage of such data is rather limited due to the apparent
domain shift to real-world data.

Recently, a few real-world MOT datasets have been proposed. For instance,
CroHD [53] dataset was introduced to track pedestrain’s head in crowded
scenes, GMOT-40 [4] was proposed for the purpose of general object track-
ing, and MVMHAT [61] and MMPTRACK [29] are adopted for multi-camera
multi-person tracking. In general, their sizes are a magnitude smaller than our
dataset. One of the biggest real-world MOT datasets is TAO [19], which provides
a great variety of scenes. Since TAO is created for general object tracking, the
number of challenging person tracking sequences is rather limited given that a
large number of videos contain only a single person. Moreover, TAO provides
full annotations for only a small fraction of videos, which makes it difficult to
train on. In contrast, our dataset has been exhaustively annotated.

Finally, the MOT datasets that are most comparable to ours are HiEve [35],
MOT17 [39] and MOT20 [20]. HiEve consists of 32 videos (13.5% of the size of
our dataset) and provides annotations for different human-centric understanding
tasks such as pedestrian tracking or pose estimation [51, 36, 15]. The main goal
of HiEve is to provide a set of videos that are recorded during complex events
(e.g. earthquake escapes). Our dataset, on the other hand, has the objective of
providing a wide variety of smart home/city scenarios during different seasons,
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Fig. 1: The figure is best viewed in color. Frames in the video are exhaustively anno-
tated with person boxes, each of which have a unique identifier (i.e. color-coded box).
The videos in the dataset cover diverse tracking scenarios in terms of camera angles,
weather / lighting condition and scenery types.

varying lightning and weather conditions and diverse crowd densities without
focusing solely on the complexity of events. The most popular MOT benchmark
which has also a similar purpose as ours is MOT17 [39]. The benchmark consists
of 14 videos that are recorded at 9 different scenes with different lightning and
camera angles. MOT20 [39] extends the MOT17 benchmark by 8 additional
videos, which was specifically created for tracking in crowds. Our dataset also
contains very crowded scenes, but provides on top of that a wide variety of
pedestrian densities indoor and outdoor.

Multi-Object Tracking Methods. Many of the well-known MOT models fol-
low the detection-by-tracking paradigm [50, 8, 57, 32, 47, 55, 59, 60], in which
object instances are firstly detected for every frame and then they are linked
across frames to form object tracks. Recently, online trackers [50, 67, 65, 42, 56]
have steadily gained ground by pushing the results on MOTChallenge [39] to new
highs. Those trackers are usually deep neural networks that include key models
for online tracking, which include a detection model [67, 44, 54, 10], a motion
model [8, 57, 50, 7, 33] and an optional person re-identification model [56, 65].
Those models are usually jointly trained with tracking annotations, i.e. a bound-
ing box with a unique identifier. Due to the scarcity of those annotations, self-
supervised training techniques [66, 50, 65, 49] were developed to leverage image-
based object detection datasets for model pre-training. In this work, we train
and evaluate three recent state-of-the-art online trackers on our dataset.

3 Video Sourcing

The creation of a dataset for training / evaluating person tracking algorithms
needs to strike a balance between the need of (1) having videos that represent
a large variety of real-world tracking applications; (2) having videos containing
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challenging scenarios for tracking algorithms (e.g. occlusions, small objects); and
(3) ensuring that the data is collected in a responsible way such that it can be
used in perpetuity. Following these guidelines, we source our dataset in two steps.

Data Source Selection. We select a pool of data sources based on the avail-
ability of video content suitable for tracking applications, as well as the presence
of an appropriate license that allows the data to be used and remain available for
academic research. We source videos from stock video services (Fillerstock [1],
Pexels [2], Pixabay [3]) and from public academic datasets for human activity
understanding (MEVA [17], Virat [40], PathTrack [37]) where proper licensing
is available. The breakdown of the number of videos for each data source is
provided in the supplementary material. Note that although MEVA and Virat
come with incomplete person bounding boxes annotations, we re-annotate all
videos included in our dataset to ensure consistency in annotations across all
data sources. We first create an initial large candidate set of videos by automati-
cally querying content from Fillerstock, Pexels, and Pixabay using a pre-defined
set of search keywords such as “person walking in the shopping mall” (please
refer to the supplementary material for the full list). The union of these videos
and the videos from the public datasets form our candidate video set.

Manual Selection. Our initial candidate dataset includes 8000+ videos which
are then manually inspected by a team of experts. The selection processes took
into account the following criteria: (1) application aligned (fixed connected home
or city level cameras), (2) moving crowds, (3) occlusion, (4) background vari-
ability, (5) static vs moving cameras, (6) camera position and (7) environment
conditions (day/night, sunny/rain/snow/cloudy etc). More details to the men-
tioned criteria are elaborated in the supplementary material. In total, we select
236 videos for manual annotation and inclusion in our dataset. The cumulative
temporal duration of these videos is 139 minutes.

4 Annotation Pipeline

Annotating person boxes with identities is time-consuming and error-prone. To
this end, we adopt AWS SageMaker GroundTruth (SMGT) service1 (an ad-
vanced version of Amazon Mechanical Turk). This workflow works as follows.
First, the annotator draws bounding boxes for all visible people in the starting
frame. In the next frame, the SMGT service leverages a pre-trained model to
predict the bounding box for each annotated person. The annotator first ver-
ify the quality of predicted bounding boxes and adjust the bounding boxes as
needed. Then, the annotator draws bounding boxes for those persons that do
not appear in earlier frames.

We employ professional annotators that have been specially trained for this
task. We ask them to annotate every possible visible person in the video unless
they are too small in size (< 20×20 pixels) to be accurately localized or they are

1
https://docs.aws.amazon.com/sagemaker/latest/dg/sms-video-object-tracking.html

https://docs.aws.amazon.com/sagemaker/latest/dg/sms-video-object-tracking.html
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(a) Camera angles (b) Scenes / weathers (c) Light condition

Fig. 2: Video-level statistics of training videos in our dataset.

in a crowd. In the latter case, we ask the annotators to draw a bounding box with
crowd label that includes all people in the crowd (e.g. Fig. 1(bottom left)). If
a person enters the area labeled as crowd, with > 95% of the person’s bounding
box covered by a crowd box, we label this occurrence as ‘ignore’ to ensure that
the predicted tracks are not penalized on these cases. As shown in Fig. 1, we
annotate with amodal bounding boxes, indicating that the full extent of the
bounding box is annotated regardless of the visibility status of the underlying
person. In addition, we also annotate the corresponding visible bounding boxes
that only enclose the visible part of the person body. This inclusion of both
annotation types give researchers the most flexibility when choosing how to
train their models and evaluating these models on other datasets.

To ensure that the annotation is of high quality, we perform a second round
of labeling where a separate group of annotators checks if (1) all people are
annotated, (2) all bounding boxes are correctly localized and (3) the identity of
a person track is consistent throughout the video. In case the annotators notice
a mistake, they correct the error. Finally, the authors of this paper do a final
verification pass on the data, sending back any videos that have errors for re-
annotation. This rigorous process allows us to have high confidence of the quality
of the provided annotations. We first annotate at 5 frames per second. Then, we
linearly interpolate those annotations and let our trained annotators verify the
correctness of those interpolations for every frame and person.

Given that not all annotated person boxes are equally interesting, and some
might even be perceived as noise, we further annotate each person track with
the following tags: 1), sitting/standing still person; 2),person in vehicle; 3),per-
son on open-vehicle; 4), reflection; 5), severely occluded person; 6), person in
background; 7), foreground person. These fine-grained track-level tags enable to
train or evaluate models along different sets of person tracks based on the needs
of various tracking applications. The definition and visual examples of those tags
are provided in the supplementary materials.
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5 Dataset

To understand how our dataset compares to current MOT datasets we analyze
various statistics of our and other publicly available datasets. We specifically
compare to three popular datasets: MOT17 [39], HiEve [35], and MOT20 [20].

5.1 Video-level Statistics

Camera Angles. We categorize the angles of the cameras that are used to
record the underlying videos into four buckets: (1) bird’s-eye view, (2) high-
angle view, (3) mid-angle view and (4) low-angle view. Visual examples are
given in Fig. 1. As shown in Fig. 2a, our dataset contains 143 (60.1%) and 33
(23.9%) videos that are recorded by mid and low-angle-view cameras, respec-
tively. On this front, the closest dataset to ours is MOT17 [39] that has 10
(71.4%) mid-angle-view and 4 (28.6%) high-angle-view videos. Out of 32 videos
in HiEve dataset [35], only 2 (6.3%) videos are recorded with mid-angle-view
cameras and the remaining 30 (93.7%) videos are with high-angle-view. For
MOT20 dataset [20], all 8 videos are captured with high-angle-view cameras.

Scenes and Weather. We categorize the scene of a video into two buckets: (1)
indoor (e.g. cafe house, mall, airport) and (2) outdoor (e.g. street, plaza, beach).
For outdoor videos, we further annotate the weather condition. As shown in
Fig. 2b, there are 63 (26.5%) indoor videos and the outdoor videos are evenly
spread across three weather/light conditions (sunny, cloudy, night/dark). Fur-
thermore as we show in Fig. 2c, there are 42 (17.6%) videos that have poor
light condition, under which tracking people becomes increasingly challenging.
Overall, our dataset provides a good diversity in terms of scene types and light
conditions. In comparison, MOT17 [39] includes 2 indoor and 2 night videos.

People Density. We define the people density (d) of the scene to be the average
number of people per frame, based on which we categorize each video into four
buckets: low density (d ≤ 10), medium density (10 < d ≤ 30), high density
(30 < d ≤ 60) and extremely high density (d > 60). As shown in Fig. 3, our
dataset has a similar distribution with MOT17 [39] and HiEve [35] dataset,
although it has a significantly larger scale. Note that although there is a positive
correlation between the tracking difficulty and the people density of the video
when the camera angle and scene / light condition is similar, people density is not
the only indicator of difficulty level of underlying videos. For example, tracking
a person in a low-angle-view video with low density can be more challenging
than that in a high-density bird’s-eye video due to the high level of occlusion in
the low-angle-view video.

In terms of the above factors, our dataset provides a set of videos that resem-
bles a similar distribution with the current dataset MOT17 [39] but at an order
of magnitude larger scale. Importantly our dataset is highly diverse which makes
the training and evaluation of tracking models more representative to real-world
person tracking challenges.
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(a) Ours (b) MOT17 (c) MOT20 (d) HiEve

Fig. 3: Video-level people density distribution of training videos.

5.2 Track-level Statistics

We further analyze the statistics of each track annotated in our dataset. We
represent a person track as a temporally ordered set of bounding boxes T =
[bbts , . . . , bbt, . . . , bbte ], in which ts and te are the start and terminal timestamp
of person track T respectively, bbt = (xt, yt, wt, ht) where (xt, yt) is the center
point coordinates of person bounding box at time t and wt, ht its width and
height. In total, 12,150 unique person tracks are annotated, out of which 7,096
tracks are from training videos, and the remaining 5,054 from test videos. Fur-
thermore, 7,534 tracks are labeled with “foreground person” tag, based on which
we derive the statistics of person tracks as follows.

Average Track Speed. We define the temporally normalized motion vector
m(t1→t2) for person track T between timestamp t1 and t2 (t2 > t1) as follows:

mt1→t2 =
1

ζ·(t2 − t1)
(xt2 − xt1 , yt2 − yt1) (1)

in which ζ is the average length of the person bounding box at timestamp t1 and
t2, that is ζ = 0.5∗(

√
(wt1 ·ht1)+

√
(wt2 ·ht2)). Therefore, m(t1→t2) indicates the

direction of the person’s motion between timestamp t1 and t2, and its L2 norm
||m(t1→t2)||2 reflects the speed of the corresponding person within a unit of time.
Then, we derive the average speed v for a track with the following equation:

v(T ) =
1

|T| − 1

|T|∑
i=2

||m(T[i−1]→T[i])||2 (2)

where T = {ts, . . . , t, . . . , te} is a sorted list of timestamps that the person
appears. We bucketize each person track to have a static/slow, medium and fast
speed if v(T ) < 0.2, 0.2 ≤ v(T ) < 0.6 and v(T ) ≥ 0.6. In Fig. 4a, we show the
distribution of track speed of our dataset in comparison with MOT17 [39]. A
few videos in MOT17 are recorded with moving camera, which leads to larger
portion of higher-speed person tracks (e.g. a person standing still appears to be
non-static in a video with moving background).
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Fig. 4: Key statistics of person tracks in training videos from our dataset and MOT17.

Occlusion Duration. A person becomes fully occluded if its appearance fea-
ture is not discernible at that particular time. In our case, this happens if the
annotator is unable to locate their position without inferring from temporal
context. Therefore, we define the occlusion duration of a person track to be
the cumulative duration (o(T )) of the person being fully occluded. We further
categorize each person track to have no, short and medium/long occlusion if
o(T ) = 0, 0 < o(T ) < 2(s) and o(T ) ≥ 2(s). As shown in Fig. 4b, our dataset
includes a significantly higher portion of person tracks with medium/long oc-
clusion in comparison to MOT17. In addition, there is a significant percentage
(3.5%) of person tracks whose occlusion duration is longer than 10 seconds. A
particular challenge in person / object tracking is to preserve the identity con-
sistency before and after the object becomes fully occluded. In this respect, our
dataset provides challenging and interesting cases.

Track Duration. The duration of a track (l(T )) is defined as the time range
between the first and last appearance of the person in the video, that is l(T ) =
te−ts. We classify each person track to be short, medium and long if l(T ) < 5(s),
5 ≤ l(T ) < 30(s) and l(T ) ≥ 30(s) respectively. As shown in Fig. 4c, person
tracks in our dataset tend to be longer in contrast to MOT17 [39]. Considering
that tracking a person in a longer duration is both interesting and technically
challenging, our dataset offers valuable testing cases along this aspect.
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Dataset
#Videos Length #Annotated #Person Min Min.

(secs) Frames Tracks Res. FPS

HiEve[35] 19 1,842 32,929 1,736 352x258 15
MOT17[39] 7 215 5,316 546 640x480 14
MOT20[20] 4 357 8,931 2,215 1173x880 25
Ours 138 4,736 118,685 7,096 720x480 15

Table 1: Comparison of dataset statistics (of training set) between our and existing
datasets. Annotated Frames refer to the frames that are manually annotated and those
that are automatically interpolated and then manually verified.

In Tab. 1, we further compare our dataset with existing person tracking
datasets. In comparison to MOT17 [39], the most popular dataset for multi-
person tracking research, our dataset includes an order of magnitude larger
number of unique person tracks and videos. Although MOT20 [20] includes more
annotated person tracks, their scope is specifically for tracking people in crowds.
Both the diversity of videos and the person tracks in our dataset are unparalleled
w.r.t other dataset including HiEve [35], which makes it a more challenging and
realistic evaluation benchmark for multi-person tracking.

5.3 Benchmarking

We randomly split the videos with 60% train and 40% test. To make sure that
both subsets follow a similar distribution, we perform the split for each video
source separately. Overall, there are 138 train and 98 test videos, and we treat
it as the official split of this dataset. The statistics for both splits are listed in
the supplementary materials.

We only evaluate on keyframes for bounding boxes with the “foreground
person” and “standing / sitting still person” tag that aren’t fully occluded.
The key frames are identical with those used for manual annotation, so we are
evaluating the results at 5FPS. With this evaluation protocol, we are discounting
the influence from the detection failures but implicitly amplifying the effect from
identity inconsistency. By doing this the missed detection on a fully occluded
person are not penalized. We argue that it’s more important to keep the identity
prediction consistent before and after the person is fully occluded rather than
inferring bounding boxes for a person that is not visible.

6 Experiments

We evaluate our dataset using three recent state-of-the-art online trackers, each
including a person detection and person identity association model, which are
jointly trained with tracking annotations. We briefly introduce the methods.

CenterTrack [66] is a single-stage online tracking model that performs joint
detection and tracking and is built upon the CenterNet [67] framework. The
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model takes as input (1) the previous RGB frame, (2) the current RGB frame,
and (3) a heatmap with the tracked object centers. The model predicts the object
boxes for the current frame, conditioned on the tracking center points that are
provided as input. In addition, the model outputs the estimated offset motion
vectors, based on which an online solver is used to link the boxes across frames.

SiamMOT [50] is a two-stage tracking model which uses Faster R-CNN [44]
for its person detection model. A Siamese-based tracker [30, 28] is incorporated
in the network as a motion model to associate the detection bounding boxes
across frames. In this work, we use the best-performing motion model, EMM, as
suggested in the original paper.

FairMOT [65] is a single-stage tracking model that uses CenterNet [67] as
person detection model. In addition to CenterNet, this method adopts a parallel
branch to extract a feature vector (embedding) for each person instance. Finally,
the affinity between the person’s location and its embedding, together with a
motion model (Kalman filter) are used to link detected people across frames.

We choose the above three models as they cover both single-stage and two-
stage detection models. Besides, they cover two mainstream linking techniques:
CenterTrack [66] and SiamMOT [50] use learned motion models for bounding box
linking, whereas FairMOT [65] leverages the similarity of person embeddings.

Implementation details. All models use DLA-34 [64] as feature backbone, and
they are pre-trained on the CrowdHuman dataset [48]. We use the official open-
source implementations for all the algorithms provided by the original authors.
We train and evaluate the model with amodal bounding boxes. Please refer to
the supplementary materials for more details.

Evaluation metrics. Following other literature, we report standard tracking
metrics including MOTA and IDF1. In general, MOTA measures the overall
performance of the end-to-end tracking system by accounting for both the de-
tection and data association performance. IDF1, on the other hand, specifically
indicates the performance of predicted identity consistency. For more details on
these metrics we refer the reader to [6, 46].

6.1 Model Evaluation

In Tab. 2, we show the results of three recent online trackers. In the default
evaluation protocol [39, 20, 35], all valid person boxes on key frames are eval-
uated. Under such setting, all models achieve relatively low MOTA and IDF1
in comparison to the performance on MOT17 [39] and HiEve [35], which under-
scores the challenges of our dataset. As expected, the detection failure (False
Positive (FP) and False Negative (FN)) heavily influences the MOTA metric.
We observe that a significant number of detection failures results from missed
detections when a person becomes fully occluded. As we elaborated in Sec. 5.3,
we should not heavily penalize those missed detections as long as the predicted
identity is consistent before and after the occlusion happens. To this end, we
apply an occlusion filter process to exclude those boxes tagged as being fully
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Methods Occlusion Filter IDF1 (↑) MOTA (↑) FP (↓) FN (↓) IDsw (↓)

CenterTrack [66] ✗ 43.04 52.31 24611 107037 10487
SiamMOT [50] ✗ 49.84 59.56 13268 98069 9201
FairMOT [65] ✗ 56.52 54.29 14568 116495 5179

CenterTrack [66] ✓ 46.36 59.28 24340 71550 10319
SiamMOT [50] ✓ 53.71 67.52 13217 62543 8942
FairMOT [65] ✓ 61.05 61.79 14540 80034 5095

Table 2: Result comparison on the test split of our dataset. Occlusion filter means that
only bounding boxes without being tagged as occluded are used during evaluation.

occluded from evaluation. As shown in Tab. 2, FN is significantly decreased,
which lifts MOTA by a large margin. Additionally, after applying the filter, a
person track with occlusion is “reduced” in length, which in-turn benefits IDF1.
Nonetheless, the improvement of IDF1 is less significant than that of MOTA.

As shown in Tab. 2, SiamMOT achieves significantly higher MOTA com-
pared to CenterTrack and FairMOT. We conjecture that its underlying detector
– Faster-RCNN [44] – works better than CenterNet [67] which underlies the other
two tracking models. To validate it, we run inference of the two underlying detec-
tors — FRCNN [44] and CenterNet [67] on the test set. FRCNN achieves 82.03%
AP@0.5 and CenterNet achieves 78.51% AP@0.5.2 Not surprisingly, FairMOT
achieves a significantly better IDF1 than the other two motion-based tracking
models, despite the fact that the detected boxes have more errors than that
of SiamMOT. This result suggests that person re-identification is essential for
tracking models to preserve the identity consistency of predicted tracks in the
case of occlusion.

6.2 In-Depth Model Analysis

Small-Size Person Tracking. Being able to correctly track small scale objects
is important for real-world application scenarios. We categorize a person track as
small if the average areas of the associated bounding boxes is smaller than 0.5%
relative to the video frame area. For example, any bounding box whose area is
smaller than 50×90 for a standard 720p video is considered small in size. In our
test set, 1,624 tracks are categorized as “small”. As shown in Tab. 3a, there is
a significant performance gap between tracking large-size and small-size persons
on both MOTA and IDF1. This is expected as both detecting and re-identifying
low-resolution objects remains a major challenge.

Static vs. Moving. In real-world scenarios, video sequences contain a mix
of static and moving objects. For example, people might be sitting on chairs
or benches (e.g. at a park or in a waiting room), as well as standing and not

2 We encourage the researchers report detection AP@0.5 of their tracking models on
our dataset.



Large scale Real-world Multi-Person Tracking 13

Method
IDF1(↑) MOTA(↑)

small large small large

CenterTrack 34.3 52.7 34.5 70.1
SiamMOT 47.1 56.6 49.9 75.2
FairMOT 50.2 66.6 40.8 72.0

(a) Results for tracks associated to
small-size vs large-size persons.

Method
IDF1(↑) MOTA(↑)

static moving static moving

CenterTrack 45.3 43.2 57.1 43.7
SiamMOT 52.6 52.6 67.2 57.9
FairMOT 59.3 60.2 60.0 53.7

(b) Results for static-to-slow vs medium-to-
fast moving tracks.

Method
IDF1(↑) MOTA(↑)
long short long short

CenterTrack 32.5 51.2 37.6 59.6
SiamMOT 39.8 59.6 51.4 70.3
FairMOT 44.3 68.3 45.2 64.4

(c) Results for tracks with medium-to-
long vs short-to-no occlusions.

Method
IDF1(↑) MOTA(↑)

s m l s m l

CenterTrack 42.9 47.4 41.4 -3.9 51.9 62.2
SiamMOT 51.3 54.4 50.7 16.4 62.1 73.0
FairMOT 52.3 61.7 58.9 13.2 58.2 64.6

(d) Results for tracks with short (s),
medium (m) and long (l) duration.

Table 3: Result comparison of models on different subsets of person tracks.

moving (e.g. waiting for the pedestrian green light). We find that the presence
of such objects can inflate the evaluation metrics given the fact that tracking
static objects is perceptually easier than tracking moving ones. This is because
static objects do not require sophisticated motion models and do not exhibit any
change in appearance over time unless they are occluded. In Tab. 3b, we show the
performance for static vs. moving objects. Overall, MOTA is significantly higher
for static tracks than for moving tracks, which indicates that static/slow-moving
people are easier to be detected in our dataset. However, IDF1 performance is
similar for both set of tracks, which suggests that the person’s motion velocity is
not strongly correlated with of its level of tracking difficulty level in our dataset.

Tracks with Full Occlusion. Being able to track such scenarios is of great im-
portance in real-world tracking applications, especially when the camera is close
to the ground where person-to-person occlusion is common. Tracking through
full occlusion and keeping its identity unchanged is challenging in particular in
video sequences where a large number of people are present. To this end, we
report results on tracks with short-to-no occlusion and with medium-to-long oc-
clusion, which are defined in Sec. 5.2. As shown in Tab. 3c, both the MOTA and
IDF1 are substantially lower for tracks with medium-to-long occlusion. In this
case, people are more likely to be partially occluded, which leads to more detec-
tion failures that contributes to lower MOTA. The huge gap in terms of IDF1
for all models suggests that preserving the same identity before and after the
person is occluded is challenging and we hope that future research can improve
performance for online trackers to track through long occlusion.
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Track Duration. In Tab. 3d, we show the break-down results for tracks with
short, medium and long duration, as defined in Sec. 5.2. There are a few inter-
esting observations: 1) the IDF1 for long-duration tracks is the lowest, despite
the fact that its corresponding MOTA is the highest. We find that this hap-
pens because long-duration tracks usually appear in high-angle view cameras
(e.g. MEVA [17], Virat [40]) in our dataset, therefore detecting person in those
videos is easier, which positively correlates with a higher MOTA; 2) the MOTA
for short-duration track is abysmal, although it has a decent IDF1. We notice
that the presence of short tracks are correlated with various challenging occlu-
sion scenarios, for example, short tracks are associated to people in large crowds
or people walking behind various objects (trees, vehicles), where the people are
first visible, then become partially-occluded and disappear quickly. The chal-
lenges presented in short, medium, and long tracks are diverse and depending
on the application each could be important. Thus we hope that researchers will
adopt the practice of reporting metrics on these three categories separately in
the future to give further insight into their model performance.

In summary, our dataset provides interesting and challenging cases for real-
world tracking that includes various duration tracks, tracks with medium-to-long
occlusion and small-size person tracks, on which existing state-of-the-art online
trackers struggle.

7 Conclusion and Discussion

In this paper, we introduced a large scale real-world multi-person tracking dataset.
The dataset is meticulously curated by (1) sourcing a set of videos that are di-
verse in terms of people density, camera angles, weather and scenery types as
well as lighting conditions and (2) exhaustively annotating all persons in every
frame with rigorous annotation and verification protocol that accommodates ro-
bust edge case handling. We demonstrated the value of the dataset by comparing
it against existing datasets including MOT17 [39], HiEve [35], and MOT20 [20].
Our dataset is a magnitude larger than the most popular MOT17 dataset in
terms of unique person tracks, number of videos, and total video duration. We
further performed in-depth analyses of existing state-of-the-art online trackers
on our dataset and observed interesting cases where current online trackers fail
to perform well. We hope that the publication of this dataset will spark a new
wave of research towards developing more usable tracking models in real-world
multi-person tracking.

Socially responsible usage of the dataset. This dataset should primarily
be used to improve person tracking algorithms, which can have a significant
positive effect on many real-world video understanding problems including for
example self-driving cars and human activity understanding. We ask the users
of this dataset to use the data in a socially responsible manner, and request to
not use the data to identify or generate biometric information of the people in
the videos.
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