Hierarchical Self-supervised Representation Learning for Movie Understanding Fanyi Xiao, Kaustav Kundu, Joseph Tighe, Davide Modolo AWS AI Labs

Motivation

Learning good representations for movies is challenging!

- 1) Annotations are scarce compared to typical action datasets: 3K movies in MovieClips VS 650k YouTube clips in Kinetics
- 2) Movies are very complex!

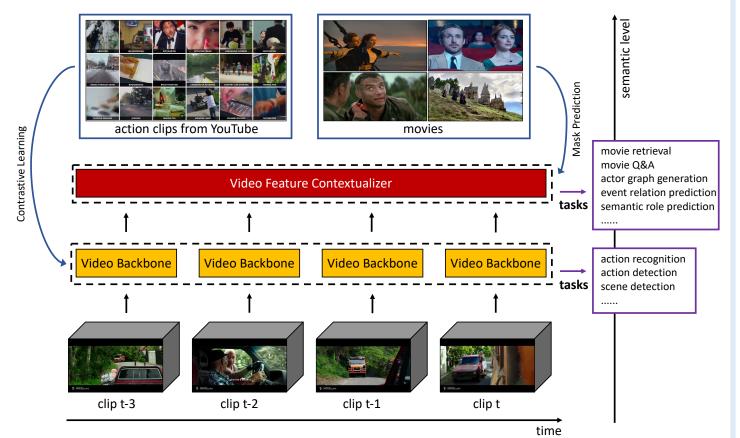
aws

- Classic video action models are not enough (SlowFast, I3D, ...)
- Requires reasoning at many levels:

Simple low-level actions:	Hugging	5
High-level complex semantic narratives:	The actors are afraid because the ship is sinking	

Previous Work

- + VidSitu [1] proposed a hierarchical movie model (CVPR 21)
- + Important progress in movie understanding
- Trained in fully-supervised manner
- Limited scalability due to the need for expensive annotations

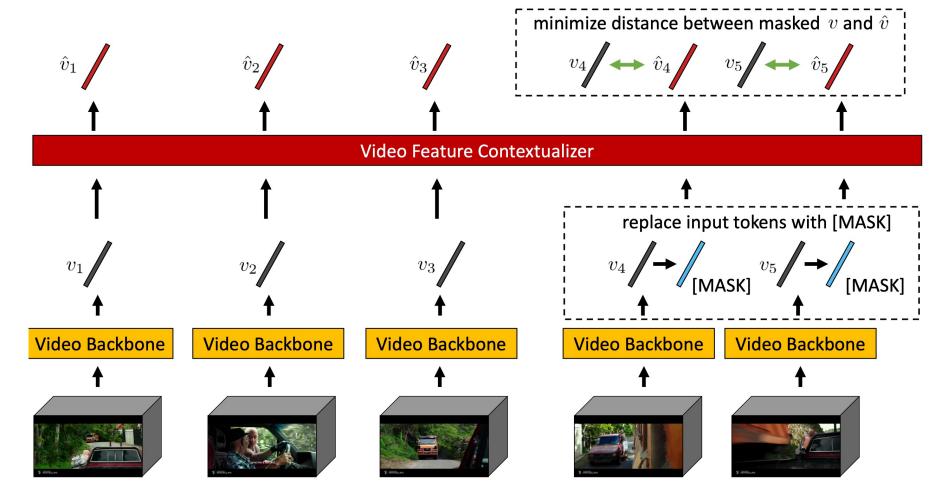

This paper

<u>Self-supervised pre-training</u> of a hierarchical movie model:

- a low-level backbone
- 2. a high level contextualizer

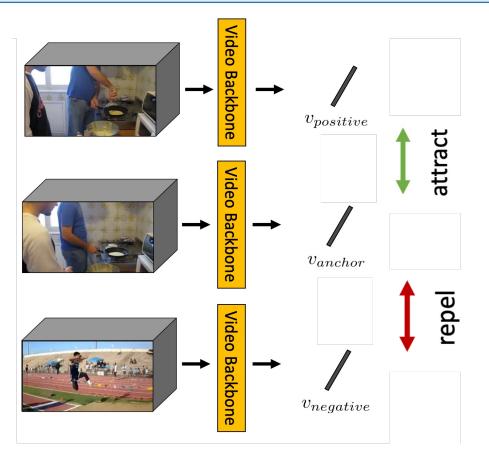
Benefits:

- More specialized representations for each level
- Reduced data needs \rightarrow Each level is trained on its own dataset
- SOTA performance


Our self-supervised pre-training for hierarchical movie models

1. Low-level backbone

- Extracts *low-level appearance* and *motion cues* for people, objects and scenes from raw pixels
- High capacity models
- Trained on large amount of YouTube videos (e.g., Kinetics)
- Trained using contrasting learning objective


2. High-Level contextualizer

- Low capacity
- Trained on small amount of movie data with stronger semantic and temporal structures (e.g., VidSitu [1], LVU [4])
- Trained using mask prediction objective

[1] "Visual Semantic Role Labeling for Video Understanding", CVPR 2021. [2] "Spatiotemporal contrastive video representation learning", CVPR 2021.

- [4] "Towards long-form video understanding", CVPR '21.

• Learn to contextualize the neighboring low-level visual tokens

References

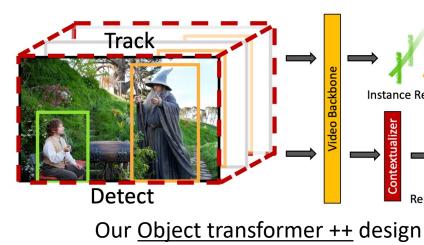
[3] "Modist: Motion distillation for self-supervised video representation learning", arXiv:2106:09703.

Semantic Role Prediction

the patient and "gym" is the scene.

Model	Pre-training			CIDEr-	CIDEr-		LEA
woder	Low-level backbone (K400)	Contextualizer	CIDEr	verb	arg	ROUGE-L	LEA
VidSitu [1]	Supervised Training	None	51.4	59.7	47.3	41.7	46.0
Ours	Contrastive Learning [2]	None	54.4	63.2	47.6	41.8	46.3
Ours	Contrastive Learning [2]	Mask Prediction (MovieClips)	61.2	69.2	55.0	43.4	47.8

Event Relation Prediction


causes B", and "A is unrelated to B".

Madal	Pre-training				
Model	Low-level backbone (K400)	Contextualizer	Mean Accuracy	Top1 Accuracy	
VidSitu [1]	Supervised Training	None	34.0	40.7	
Ours	Contrastive Learning [3]	None	34.7	41.8	
Ours	Contrastive Learning [3]	Mask Prediction (MovieClips)	35.3	41.6	

Verb Prediction

	Pre-training					
Model	Low-level backbone (K400)	Contextualizer	Acc@1	Acc@5	Recall@5	
VidSitu [1]	Supervised Training	None	39.3	69.3	18.7	
Ours	Contrastive Learning [3]	None	43.0	73.2	17.5	
Ours	Contrastive Learning [3]	Mask Prediction (MovieClips)	44.7	74.4	18.4	

Goal: Predict 9 diverse tasks for user engagement, movie meta data classification and content understanding

Results on VidSitu [1]

Goal: predict semantic role labels for each verb. For example, for a verb, "throw", the person is the *agent*, "ball" is

Goal: 4-way classification problem between four relation types: "A is enabled by B", "A is a reaction to B", "A

• *Goal*: predict action classes (among 1560 classes) for short video segments. Example classes: *look*, *talk*, *walk*, etc.

Results on LVU [4]

	Instance model	Scene model	Top1 Rank	Mean rank
Limer 1	Object Transformer [4]	None	1/9	3.2
Representations	Contrastive Learning [2]	None	0/9	3.9
Object	None	Supervised	2/9	4.4
Scene epresentations	None	Ours	3/9	2.9
I	Object transformer ++	Ours	4/9	2.3