

TubeR takes as input a video clip and directly outputs **tubelets: sequences** of bounding boxes and their action labels.

TubeR runs end-to-end without person detectors, anchors or proposals.

Our contributions are:

1. TubeR: a tubelet-level transformer framework for action detection.

2. Tubelet query and attention-based formulation is able to generate tubelets of arbitrary location and scale.

3. Context aware classification head is able to aggregate **short-term and** long-term contextual information.

4. State-of-the-art results on three challenging action detection datasets.

TubeR: Tubelet Transformer for Video Action Detection Jiaojiao Zhao^{1*}, Yanyi Zhang^{2*}, Xinyu Li^{3*}, Hao Chen³, BingShuai³, Mingze Xu³, Chunhui Liu³, Kaustav Kundu³, Yuanjun Xiong³, Davide Modolo³, Ivan Marsic², Cees G.M. Snoek¹, Joseph Tighe³

¹University of Amsterdam

TubeR

Model Compariso I3D [15] ACRN [3: **STEP** [45] VTr [13] WOO [5] TubeR TubeR Compariso Slowfast-50 X3D-XL [8 CSN-152* LFB [43] ACAR-NET TubeR TubeR Compariso WOO [5] SF-101-NL ACAR-NET AIA [37] TubeR TubeR **Tuber is effective**

+4.4%. **TubeR is efficient**

Our TubeR has 8% fewer FLOPs than the most recently end-to-end model WOO and is 4× more efficient than the two-stage model slowfast with noticeable performance gain.

Encoder

The TubeR encoder is designed for processing information in the 3D spatio-temporal space.

Decoder

The decoder contains a tubelet-attention module and a crossattention (CA) layer which is used to decode the tubelet-specific feature.

Tubelet Query: We propose to learn a small set of tubelet queries driven by the video data. TubeR uses a tubelet query to represent the dynamics of a tubelet, instead of hand-designing 3D anchors.

Tubelet Attention: Consists of a spatial-attention that learns the relative positional association between bounding boxes on each frame and a temporal-attention that links boxes for each action temporally.

Task-Specific Heads

Action switch regression head: The bounding boxes in a tubelet are simultaneously regressed with an FC layer. The action switch allows our method to generate action tubelets with a more precise temporal extent.

Context aware classification head. The classification can be simply achieved with a linear projection. We further propose to leverage spatio-temporal video context to help video sequence understanding.

²Rutgers University

³AWS AI Labs

	Detector	Input	Backbone	Pre-train	Inference	GFLOPs	mAP
n to end	-to-end model	S					
	×	32×2	I3D-VGG	K400	1 view	NA	14.5
	×	32×2	S3D-G	K400	1 view	NA	17.4
	×	32×2	I3D-VGG	K400	1 view	NA	18.6
	×	64×1	I3D-VGG	K400	1 view	NA	24.9
	×	8×8	SF-50	K400	1 view	142	25.2
	×	16×4	I3D-Res50	K400	1 view	132	26.1
	×	16×4	I3D-Res101	K400	1 view	246	28.6
n to two	-stage models						
[9]	F-RCNN	16×4	SF-50	K400	1 view	308	24.2
	F-RCNN	16×5	X3D-XL	K400	1 view	290	26.1
	F-RCNN	32×2	CSN-152	IG + K400	1 views	342	27.3
	F-RCNN	32×2	I3D-101-NL	K400	18 views	NA	27.7
[28]	F-RCNN	32×2	SF-50	K400	6 views	NA	28.3
	×	32×2	CSN-50	K400	1 view	78	28.8
	X	32×2	CSN-152	IG + K400	1 view	120	31.7
n to bes							
	×	8×8	SF-101	K400+K600	1 view	246	28.0
[9]	F-RCNN	32×2	SF-101+NL	K400+K600	6 views	962	28.2
[28]	F-RCNN	32×2	SF-101	K400+K600	6 views	NA	30.0
	F-RCNN	32×2	SF-101	K400+K700	18 views	NA	31.2
	×	32×2	SF-101	K400+K700	1 view	240	31.6
	×	32×2	CSN-152	IG + K400	2 view	240	32.0

Comparison on AVA v2.1 validation set.

TubeR outperforms the most recent **end-to-end works** WOO by 0.9% and VTr by 1.2%. TubeR with CSN backbones outperforms **the two-stage model** with the same backbone by

		UCF	101-2	<i>JHMDB51-21</i>		
Backbone	f-mAP	0.20	0.50	0.50:0.95	0.20	0.50
DLA34	72.1	78.2	50.7	26.2	-	-
Res50	79.5	81.2	55.1	28.1	-	-
C3D	41.4	47.1	-	-	78.4	76.9
I3D	80.1	82.8	57.7	28.6	79.7	78.3
CSN-152	83.2	83.3	58.4	28.9	87.4	82.3
VGG	72.1	77.5	52.9	24.1	-	-
VGG		78.5	50.3	24.5	-	74.7
VGG	67.1	77.2	51.4	25.0	74.2	73.7
DLA34	78.0	82.8	53.8	28.3	77.3	77.2
I3D	75.0	76.6	-	-	-	-
I3D	76.3	-	59.9	-	-	78.6
I3D	72.5	81.6	64.6	26.7	86.8	85.3
I3D	81.3	85.3	60.2	29.7	81.8	80.7

Comparison on UCF101-24 and JHMDB51-21 with video-mAP.

Results

With same or comparable backbone: TubeR outperforms most of previous work with both RGB and two-stream inputs.

With stronger backbone: TubeR with RGB inoput outperforms previous works even with twostream inputs.

Frame-mAP: TubeR also achieves the SOTA frame mAP comparing with previous works by a large margin.

Visualization of **tubelet specific feature** with attention rollout.

- 1. TubeR can generate highly discriminative tubelet-specific features.
- 2. Action switch works as expected and initiates/cuts the tubelets.
- 3. TubeR generalizes well to scale changes (the brown tubelet).
- 4. Tubelets are tightly associated with tubelet specific feature.

Visualizations of **challenging** cases. Top: shot changes; Middle: actors moving with distance; Bottom: multiple actors with small and large scales.